GE
Intelligent Platforms

Operator’s Reference

Common RFM2g* Application Program
Interface (API) and Command Line Interpreter

for RFM2g* Drivers

Publication No: 523-000447-000 Rev. J

imagination at work

Document History

Operator’s Reference Manual Document Number: 523-000447-000 Rev. J

Document History

Revision

Date

Change/Reference

J

9/2014

ECR-00025830 Change last item in References section on page 9:
FROM: VMISFT-RFM2g* Specification, Network and Shared Memory Driver,

TO:

GE Document Number 820-000447-000
RFM2g* Datasheet, Network and Shared Memory Driver, GE Document
Number GFA-1085

Table of Contents

LISt Of TADlES . . . 7
OVEBIVIBW . . oottt et e e e e e e e e 8
1 « Application Program Interface (API) Library 11
1L INtrOdUCHION. o 11
1.2 Using the Application Program Interface. 12
1.2.1 0pening the REM2Q DriVEr e 12
1.2.2 Routine Code for Use with API Function Examples 12

1.3 REM2G ErrOr COOES. . ..ottt e e e e e e e e e e 14
L4 REM2G APl FUNCHIONS. o e 16
1.5 RFM2g Opening and Closing API FUNCLIONS. e 18
L5 L REM2GOPENN . vttt e e e 18
152 RFM2GCIOSE) . .o 20

1.6 RFM2g Configuration APl FUNCLIONS. e e 21
1.6.1 RFM2gGetConfigl) ...t 22
1.6.2 REM2GUSEIrMEMOIY() . ..ottt e e e e e e e e e 23
1.6.3 RFM2gUNMapUSErMemOry()ovet et e 25
1.6.4 RFM2gUserMemoryBytes() 26
1.6.5 RFM2gUnMapUserMemoryBytes() 28
1.6.6 RFM2GNOAEIDI) ...\t 30
1.6.7 REM2GBOArdID()ttt e 31
1.6.8 REM2GSIZE) . .o 32
1.6.9 REM2GFITSH) ot 33
1.6.10 REM2GDeVICENAME) . ..ot 34
1.6.11 RFMR2GDIIVEISION() . . . oo et 35
1.6.12 RFM2GDrIVEIVEISION() ...ttt et e e e e e e 36
1.6.13 RFM2gGetDMATHreshold()t 37
1.6.14 RFM2gSetDMAThreshold()o i 38
1.6.15 RFM2gGetDMABYLESWAP() ..ottt 40
1.6.16 RFM2GSEtDMABYLESWAD) ...t e e e e e 41
1.6.17 RFM2QGEetPIOBYIESWAD() . . .o oot 42
1.6.18 RFM2gSetPIOBYtESWAP() ...ttt 43
1.7 RFM2g Data Transfer API FUNCLIONS. e e e 44
1.7.1 Data Transfer CONSIAErationso.. it e e e 44

Big Endian and Little Endian Data CoNVErsionSttt 44

Using Direct Memory ACCeSS (DMA) ..o 45

1.7.2 REM2GREAA) ..o 46
L7 3 RFEM2GWIIEE) . .o e 48
1.7.4 RFM2gPeek8|(), RFM2gPeek16(), RFM2gPeek32() and RFM2gPeekb4()o, 50
1.7.5 RFM2gPoke8(), RFM2gPoke16(), RFM2gPoke32() and RFM2gPoke64() 52

1.8 RFM2g Interrupt EVent API FUNCLIONS. e e 54
1.8.1 REM2GENGDIEEVENtl) ... o 55

Table of Contents 3

1.8.2 REM2gDisableBVeNt) 57

1.8.3 REM2GSendEVeNtl) i 59
1.8.4 RFM2gWAitFOrEVENtl) e 61
1.8.5 RFM2gEnableEventCallback() 64
1.8.6 RFM2gDisableEventCallback() 66
1.8.7 RFM2QCIearBVentl)o 68
1.8.8 RFM2gCancelWaitFOrEVent() oo e 70
1.8.9 RFM2gClearEventCountl)ot 72
1.8.10 RFM2gGetEventCoUNtl) e e 74

1.9 RFM2g Utility API FUNCLIONS. e e 76
191 RFM2GEITOrMSG() oot 77
1.9.2 REM2gGetledl) 78
193 REM2gSetledl)o 79
1.9.4 RFM2gCheckRINGCON) ... e e e 80
1.9.5 RFM2gGetDebugFlags()o 81
1.9.6 RFM2G SEtDEDUGFIATS - .+ et 83
1.9.7 REM2gGetDarkONDark()o e 85
1.9.8 RFEM2gSetDarkONnDark()o 86
1.9.9 RFEM2gClearOWNnDatal)o 87
1.9.10 REM2gGEtTransSmitl)ot e e 88
1.9.11 RFM2GSetTransmitl) 89
1.9.12 RFM2GGELOOPDACK(. . ..o e e 90
1.9.13 RFM2gSetLoopback() 91
1.9.14 RFM2gGetParityENablel) o 92
1.9.15 RFM2gSetParityEnablel) 93
1.9.16 RFM2gGetMemoryOffset() o 94
1.9.17 RFM2gSetMemoryOffsetl)o 95
1.9.18 RFM2gGetSlidingWindowl) 96
1.9.19 RFM2gSetSlidingWIndowl) 97

2 e rfm2g_util.c Utility Program.o 98
2.1 INErOdUCHION. . 98
2.2 RFM2g Command Line INterpreter.o 98
2.2.1 Using the Command Line Interpreter ... 98
Notes On Entering NUMDETS o e 99

Notes On Device NUMDETS e 99

2.2.2 Command Line Interpreter EXample ... 100

2.3 Utility COmMMANGAS. ... 101
2.3, 00ardid ... 103
2.3.2 CANCEIWAIL .« .. 103
2.3 3 ChECKIING . . 104

2. 3.4 ClearBY Nt . 104
2.3.5 CleareventCOUN 105
2.3.6 Clearowndatao 105

2. 3.7 CONMIg o 106

4 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2. 3. 8 dOVNOME . oo 106

2.3.9 disableeVent ... 107
2.3.10 disablecallback 108
2. 3. L L dIVEISION . 108
2.3. 12 drIVEIVEISION . . 109
2.3, 13 drVSPeCIfiC o 109
2 3. A AU 110
2.3. 15 enableeVent ... 111
2.3.16 enablecallback 112
G T80 A T 0] 0 1T O P 113
2. 3. L8 It o 113
0 T8 I £] S 113
2.3.20 getdarkondark 114
2.3.21 getdebuUg 114
2.3.22 getdmMabytesSWaD 114
2.3.23 QeleVENICOUNT ... 115
2.3 20 getled 115
2.3.25 getmemoryoffset 116
2.3.26 getloopback ... 116
2.3.27 getparityenable 116
2.3.28 QetPIODYIESWAD oot 116
2.3.29 getslidingWindow 117
2.3.30 getthreshold 117
2.3.3 L QeI NSt .o 117
2.3, 32 el 118
2.3 3 MNOPUSEE ettt ettt e e et e e e e e 121
2.3 34 MOPUSEI DY S o 122
G T 253 0 1< 0 T o T P 123
2. 3,36 N0AEIA . .o 124
2.3.37 peek8, peek16, peek32 and peekbd 125
2.3.38 pPerformaNCetest 126
2.3.39 poke8, pokel6, poke32 and poKeBL 127
2. 3 A0 QUIT L 128
2 3 L T 129
G T = o =0 | P 130
2 3 A T U o 131
2 30 SN L 132
2.3.45 setdarkondark 133
2.3.46 SetdebUg ... 134
2.3.47 setdmabytesWapo 135
2 3B sl ed 135
2.3.49 SetloopbaCK . .. o 136
2.3.50 setmemoryoffset 136
2.3.51 setparityenable ... 137

Table of Contents 5

2.3.52 SetPIODYLESWAD ... 137

2.3.53 setslidingWINdow 138

2.3.54 setthreshold 138

2.3, St NSt .o 139

2.3, SIZE o 139

G T8 A [1o o 10 <7< P 140

2.3, 58 UNMAPUSEIDYIES ... 140

2. 3 D WA o 141

2. 3 B0 W Lo 142

2.4 Troubleshooting the rfm2g_util.c Command Line Interpreter. 143
A L BT OIS e 143

3¢ RFM2g Sample Applications. o 144
3.0 rfM2Q SENAEr.C. o 144
3.2 MfM2Q TECRIVE.C. .. 144
3.3 MM 20 MNP C. o 145
3.4 rfm2g_sender.c and rfm2g_receiver.c Example Workflow. 145
3.5 rfm2g_map.c Example Workflow. 147
MOINEENANCE. .« et 148

6 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

List of Tables

Table 1-1 Common RFM2G Error COAEottt 15
Table 1-2 RFM2g APl FUNCHIONS ... e 16
Table 1-3 RFM2g Opening and Closing API FUNCLIONSo o 18
Table 1-4 RFM2g Configuration AP FUNCLIONS e 21
Table 1-5 RFM2g Data Transfer API FUNCLIONS o 44
Table 1-6 RFM2g Interrupt Event API FUNCLIONS e 54
Table 1-7 RFM2gENabIEEVENT) 55
Table 1-8 RFM2gDisableBEVent() 57
Table 1-9 RFM2gWaItFOrEVENT) . ..ot e e 61
Table 1-10 RFM2gEnableEventCallbackl)o 64
Table 1-11 RFM2gDisableEventCallback() 66
Table 1-12 RFM2g Utility APL FUNCLIONS e 76
Table 2-1 RFM2g Driver COMMANGSttt e e e e e e e e e 101

List of Tables 7

Overview

Features

This manual provides information on the common components included in the
RFM2g* drivers, which enables you to access the features of a variety of PCI, PCle,
PMC and VME RFM2g hardware.

The RFM2g driver provides all of the necessary files, scripts and programs for you
to install, test and use any of the supported Reflective Memory (RFM) Interface
cards in your system.

The RFM2g driver provides the following common features:

* Application Program Interface (API) Library — Application programs may use

the services provided by the REM2g Application Program Interface (API)
library to access the features of the REM2g devices in a portable way. Using
the API library makes it easy to use a different model of RFM interface, or to
rehost your application program on a different supported host platform.
See Chapter 1 * Application Program Interface (API) Library, page 11.

Command Line Interpreter — The rfm2g_util.c program is a command line
interpreter that enables a user to exercise various RFM2g API commands by
entering commands at the keyboard. To use rfm2g_util.c, follow the direc-
tions in your driver-specific manual. You can enter help to display a list of
commands. See Chapter 2 *rfm2g_util.c Utility Program, page 98 for more
information.

Example Programs — The RFM2g driver contains the rfm2g_sender.c,
rfm2g_receiver.c and rfm2g map.c sample programs, which provide exam-
ples on how to use the driver and API with your application. See Chapter 3
* RFM2g Sample Applications, page 144.

8 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

References

g NOTE

For a list of the files distributed with your RFM2g driver, see your driver-specific manual.
The following is a list of reference documentation related to RFM2g drivers:

e VMIPCI-5565* Ultrahigh-Speed Fiber-Optic Reflective Memory with Interrupts
Product Manual, GE Document Number 500-855565-000

e VMIPMC-5565* Ultrahigh-Speed Fiber-Optic Reflective Memory with Interrupts
Product Manual, GE Document Number 500-755565-000

o VMIPCI-5565PIORC* Ultrahigh-Speed Fiber-Optic Reflective Memory with
Interrupts Product Manual, GE Document Number 500-9367855565-000

e VMIPMC-5565PIORC* Ultrahigh-Speed Fiber-Optic Reflective Memory with
Interrupts Product Manual, GE Document Number 500-9367755565-000

¢ PCIE-5565RC* Ultrahigh-Speed Fiber-Optic Reflective Memory with Interrupts
Product Manual, GE Document Number 500-9300875565-000

e VMIVME-5565* Ultrahigh-Speed Fiber-Optic Reflective Memory with Interrupts
Product Manual, GE Document Number 500-005565-000

e VMIACC-5595%, 2Gb/s Reflective Memory Hub Assembly, GE Document
Number 522-805595-000

e RFM2g* Datasheet, Network and Shared Memory Driver, GE Document
Number GFA-1085.

Please call your GE sales representative for more information.

Overview 9

Organization

This manual is composed of the following chapters:
Overview provides a general description of the REM2g.

Chapter 1: Application Program Interface (API) Library describes the API that
comes with the REM2g device driver that provides the application developer with
a common API for developing portable REM2g applications that are platform-
independent.

Chapter 2: rfm2g_util.c Utility Program describes the command line interpreter
(rfm2g_util.c) that enables the user to exercise various RFM2g commands by
entering commands at the standard input (usually the console keyboard).

Chapter 3: RFM2g Sample Applications contains information on the three sample
application programs delivered with the RFM2g driver in the rfm2g/samples
folder.

Maintenance provides GE'’s contact information relative to the care and
maintenance of the unit.

10 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1 « Application Program Interface (API) Library

1.1 Introduction

The API that comes with the RFM2g device driver provides the application
developer with a common API for developing portable RFM2g applications that
are platform-independent. The API is located in the file rfm2g_api.h.

The rfm2g_api.h file defines the common application program interface provided
by the driver. Use this header file in application programs to access the RFM2g
device. This file is suitable for inclusion in either a standard C or C++ compilation.

The API consists of this header file and libraries for the following development
language:

* ANSI-C Language Bindings — A C-language API provides functions and
macro definitions that assist the applications programmer in using the raw
features of the device driver and its associated hardware.

Applications that take advantage of the API will be portable to other platforms
because the idiosyncrasies of the host system are abstracted by the APL

The driver contains API functions that enable you to:

¢ Open and close the driver

¢ Configure the board

¢ Transfer data

¢ Control/handle interrupt events

Before an application program can access an REM2g device, that device must be
opened. When the device is opened successfully, a handle is returned to the
application which is used in all subsequent operations involving the device
driver. The handle’s first call must be used to initialize the APL

In addition to the services provided by the driver, an application program can
directly access the shared memory contained on the RFM2g interface. When the
application opens the RFM2g device, the memory area of the RFM2g device can
be mapped into the virtual memory space of the application program. The
program can then treat the RFM2g as if it were an ordinary memory. Indirect
pointer references to the RFM2g will work normally.

% NOTE

The operating system does not perform memory bounds checking if the indirect method is used.
Data corruption of system memory is likely to occur if a user application increments a pointer
beyond the end of valid Reflective Memory.

Application Program Interface (API) Library 11

1.2 Using the Application Program Interface

The RFM2g driver’s rfm2g_util.c program is a command line application that
enables you to exercise almost all of the driver’s API functions. Once you have
built and are running the rfm2g_util.c program, enter help at the prompt to
obtain a list of commands that can be run using rfm2g_util.c. To obtain detailed
help for a specific command, enter help [command], where [command] is any of the
commands listed by the help command.

The code in the rfm2g_util.c file can be used as an example of how to use each
API command by examining the function do[command] (), where [command] is
any of the commands listed by the help command.

1.2.1 Opening the RFM2g Driver
Before using any of the RFM2g commands, you must call the REM2gOpen()

function to open the RFM2g device using the code shown in “Routine Code for
Use with API Function Examples” below.
1.2.2 Routine Code for Use with API Function Examples

The following routine, rfm2gTestApiCommand(), can be used with the example
code listed at the end of each function.

The code does the following:
Opens the RFM2g driver

Executes the code for the inserted API function

Prints an error message when an error occurs
Closes the REM2g driver
e Returns an RFM2G_STATUS code

To use this routine, replace the line:

/* Place APl command example here */

12 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

with the code provided in the API function example.

#define DEVICE /* Place 0S specific device name in quotes before
this comment */

RFM2G_STATUS rfm2gTestApiCommand(void)

{

RFM2GHANDLE Handle;

RFM2G_STATUS result;

/* Open the Reflective Memory device */

result = RFM2gOpen(DEVICE, &Handle);

if(result '= RFM2G_SUCCESS)

{
printf("ERROR: RFM2gOpen() failed.\n");
printf("ERROR MSG: %s\n', RFM2gErrorMsg(result));
return(-1);

}

{
/* Place APl command example here */

}

if(result '= RFM2G_SUCCESS)

{
printf("ERROR: APl command returned error._.\n");
printf("ERROR MSG: %s\n', RFM2gErrorMsg(result));

by

/* Close the Reflective Memory device */

RFM2gClose(&Handle);

return(result);

}

E NOTE

Three sample application programs (rfm2g_sender.c, rfm2g_receiver.c and rfm2g_map.c) are
delivered with the RFM2g driver that show how to use the driver and API with your application. See
Chapter 3 *RFM2g Sample Applications, page 144 for more information.

Application Program Interface (API) Library 13

1.3 RFM2g Error Codes

The following is a list of the common error codes that can be output by the RFM2g
device driver. Drivers may define additional error codes that are driver specific.
Refer to your driver-specific manual for more information.

You may call the REM2g API's REM2gErrorMsg() function with the error code to
retrieve a description of the error code.

E NOTE

Error code values are driver-specific.
Use the error code name instead of the value in user applications.

14 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Table 1-1 Common RFM2g Error Code

Error Code

Description

RFM2G_SUCCESS
RFM2G_NOT_IMPLEMENTED
RFM2G_DRIVER_ERROR
RFM2G_TIMED_OUT

No error
Function is not currently implemented
An error occurred during a call to the driver

A wait timed out

RFM2G_LOW_MEMORY
RFM2G_MEM_NOT_MAPPED
RFM2G_OS_ERROR
RFM2G_EVENT_IN_USE

A memory allocation failed
Memory is not mapped for this device
Function failed for other OS defined error

The Event is already being waited on

RFM2G_NOT_SUPPORTED
RFM2G_NOT_OPEN
RFM2G_NO_RFM2G_BOARD
RFM2G_BAD_PARAMETER_1

Capability not supported by this particular Driver/Board
Device not open
Driver did not find RFM2g device

Parameter 1 to the function is either NULL or invalid

RFM2G_BAD_PARAMETER_2
RFM2G_BAD_PARAMETER_3
RFM2G_BAD_PARAMETER_4
RFM2G_BAD_PARAMETER_5

Parameter 2 to the function is either NULL or invalid
Parameter 3 to the function is either NULL or invalid
Parameter 4 to the function is either NULL or invalid

Parameter 5 to the function is either NULL or invalid

RFM2G_BAD_PARAMETER_6
RFM2G_BAD_PARAMETER 7
RFM2G_BAD_PARAMETER_8
RFM2G_BAD_PARAMETER_9

Parameter 6 to the function is either NULL or invalid
Parameter 7 to the function is either NULL or invalid
Parameter 8 to the function is either NULL or invalid

Parameter 9 to the function is either NULL or invalid

RFM2G_OUT_OF_RANGE
RFM2G_MAP_NOT_ALLOWED
RFM2G_LINK_TEST_FAIL

Board offset/range extends outside board memory
Desired board offset is not legal for board memory size

Ring continuity test failed

RFM2G_MEM_READ_ONLY
RFM2G_UNALIGNED_OFFSET
RFM2G_UNALIGNED_ADDRESS
RFM2G_LSEEK_ERROR
RFM2G_READ_ERROR
RFM2G_WRITE_ERROR
RFM2G_HANDLE_NOT_NULL
RFM2G_MODULE_NOT_LOADED
RFM2G_NOT_ENABLED
RFM2G_ALREADY_ENABLED
RFM2G_EVENT_NOT_IN_USE
RFM2G_BAD_RFM2G_BOARD_ID
RFM2G_NULL_DESCRIPTOR
RFM2G_WAIT_EVENT_CANCELED
RFM2G_DMA_FAILED
RFM2G_NOT_INITIALIZED
RFM2G_UNALIGNED_LENGTH
RFM2G_SIGNALED
RFM2G_NODE_ID_SELF
RFM2G_MAX_ERROR_CODE

Function attempted to change memory outside of User Memory area

An offset is not properly aligned for the corresponding data width
An address is not properly aligned for the corresponding data width
The Iseek(2) operation preceding a read or write failed

The read(2) operation was not successful

The write(2) operation was not successful
Cannot initialize a non-NULL handle pointer
The driver module has not been loaded into the kernel

An attempt was made to use an interrupt that has not been enabled

An attempt was made to enable an interrupt that was already enabled
No process is waiting on the interrupt

Invalid RFM2g board ID

RFM2GHANDLE is null

Wait for event canceled
DMA operation failed
Cannot initialize a handle pointer

An offset is not properly aligned for the corresponding data length

Signal from OS
Cannot send event to self

Invalid error code

Application Program Interface (API) Library 15

1.4 RFM2g API Functions

The following RFM2g API functions in the rfm2g_api.h file can be used with the
RFM2g driver.

Table 1-2 RFM2g API Functions
Opening and Closing API Functions

API Function Description
RFM2gOpen() Opens the RFM2g driver and returns an RFM2g handle.
RFM2gClosel) Closes an open RFM2g handle and releases resources allocated to it.

RFM2g Configuration API Functions

API Function Description

RFM2gGetConfig() Obtains a copy of the RFM2GCONFIG configuration structure.

RFM2gUserMemory() Maps RFM2g memory to the user space.

RFM2gUnMapUserMemory() Unmaps RFM2g memory from the user space that was mapped
using RFM2gUserMemory()

RFM2gUserMemoryBytes|() Maps RFM2g memory to the user space.

RFM2gUnMapUserMemoryBytes|() Unmaps RFM2g memory from the user space that was mapped
using RFM2gUserMemoryBytes|)

RFM2gNodelD() Returns the RFM2g device node ID.

RFM2gBoardIDI) Returns the ID of the board corresponding to the passed-in handle.

RFM2gSize() Returns the total amount of memory space available on the RFM2g
device.

RFM2gFirst() Returns the first available RFM2g offset.

RFM2gDeviceNamel() Returns the device name associated with an RFM2g handle.

RFM2gDlIVersion() Returns the DLL version.

RFM2gDriverVersion() Returns the RFM2g device driver version.

RFM2gGetDMAThreshold) Returns the current DMA (Direct Memory Access) threshold value.

RFM2gSetDMAThreshold) Sets the transfer size at which reads and writes will use DMA.

RFM2gGetDMAByteSwap() * Returns the state of DMA byte swapping specified by
RFM2gGetDMAThreshold|).

RFM2gSetDMAByteSwapl() * Sets the current ON/OFF state of DMA byte swapping.

RFM2gGetPIOByteSwapl() * Returns the state of PIO byte swapping specified by
RFM2gSetPIOByteSwapl).

RFM2gSetPIOByteSwapl) * Sets the current ON/OFF state of PIO (Programmed 10) byte
swapping.

RFM2g Data Transfer APl Functions

API Function Description

RFM2gRead() Reads one or more bytes starting at an offset in Reflective Memory.
RFM2gWrite() Writes one or more bytes starting at an offset in Reflective Memory.
RFM2gPeek8(), RFM2gPeek16), Reads a single byte, word or longword from an offset in Reflective
RFM2gPeek32() and RFM2gPeeké64() t Memory.

RFM2gPoke8(), RFM2gPoke16l), Writes a single byte, word or longword to an offset in Reflective
RFM2gPoke32() and RFM2gPoke64() T Memory.

RFM2g Interrupt Event API Functions

API Function Description

RFM2gEnableEvent() Enables reception of an RFM2g interrupt event.
RFM2gDisableEvent() Disables the reception of an RFM2g event.

RFM2gSendEvent() Transmits the specified RFM2g interrupt event to one or all other

RFM2g node IDs.

16 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Table 1-2 RFM2g API Functions (Continued)

API Function
RFM2gWaitForEvent()

RFM2gEnableEventCallbacki()
RFM2gDisableEventCallback()

RFM2gClearEvent()
RFM2gClearEventCount()
RFM2gGetEventCount()

RFM2gCancelWaitForEvent()

Opening and Closing API Functions

Description

Blocks the calling process until an occurrence of the specified
RFM2g interrupt event is received or a timeout (if enabled) expires.

Enables the interrupt notification for one event on one board.
Disables the interrupt notification for one event on one board.
Flushes all pending events for a specified event type.

Clears the event counter for an interrupt event type.

Gets the number of interrupt events for a given event type.

Cancels any pending RFM2gWaitForEvent() calls for a specified event
type.

RFM2g Utility APl Functions

API Function Description

RFM2gErrorMsgl) Returns a pointer to a text string describing an error code.

RFM2gGetLed() Retrieves the current ON/OFF state of the Reflective Memory board's
STATUS LED.

RFM2gSetLed|) Sets the ON/OFF state of the Reflective Memory board's STATUS LED.

RFM2gCheckRingCont() Returns the fiber ring continuity through nodes.

RFM2gGetDebugFlagsl() Retrieves a copy of all RFM2g device driver debug control flags.

RFM2gSetDebugFlagsl) Sets or clears the device driver debug control flags.

RFM2gGetDarkOnDark() *

RFM2gSetDarkOnDark() *

RFM2gClearOwnDatal)

RFM2gGetTransmit()

RFM2gSetTransmit()
RFM2gGetLoopback()

RFM2gSetLoopback()

RFM2gGetParityEnable()

RFM2gSetParityEnable()

RFM2gGetMemoryOffset()
RFM2gSetMemoryOffset()
RFM2gGetSlidingWindow() *

Retrieves the current ON/OFF state of the Reflective Memory boards
Dark on Dark feature.

Sets the ON/OFF state of the Reflective Memory board's Dark on
Dark feature.

Returns the state of the Own Data bit and resets the state if set,
calling this function will turn OFF the Own Data LED if ON.

Retrieves the current ON/OFF state of the Reflective Memory board's
transmitter.

Sets the ON/OFF state of the Reflective Memory board's transmitter.

Retrieves the current ON/OFF state of the Reflective Memory board's
loopback of the transmit signal to the receiver circuit internally.

Sets the ON/OFF state of the Reflective Memory board's loopback of
the transmit signal to the receiver circuit internally.

Retrieves the current ON/OFF state of the Reflective Memory boards’
parity checking on all onboard memory accesses.

Sets the ON/OFF state of the Reflective Memory board's parity
checking on all onboard memory accesses.

Gets the memory offset of the Reflective Memory board.
Sets the memory offset of the Reflective Memory board.

Retrieves the base Reflective Memory offset and size of the current
sliding window.

RFM2gSetSlidingWindowl() *

Sets the base Reflective Memory offset of the sliding window.

* NOTE: These APIs are not supported on VME RFM2g hardware.
t NOTE: These APIs are not supported on VxWorks OS.

Application Program Interface (API) Library 17

1.5 RFM2g Opening and Closing APl Functions

The following API functions in the rfm2g_api.h file can be used to open and close
the RFM2g driver.

Table 1-3 RFM2g Opening and Closing API Functions

API Function Description
RFM2gOpen) Opens the RFM2g driver and returns an RFM2g handle.
RFM2gClosel) Closes an open RFM2g handle and releases resources allocated to it.

1.5.1 RFM2gOpenl)

The RFM2gOpen() function connects the application program to the RFM2g
device driver and API library. The API library will open the specified RFM2g
device and return a handle which the program must use in all further references
to the RFM2g device.

Several programs and execution threads may have the same RFM2g interface
open at any given time. The driver and the API library are thread-safe; however, it
is the responsibility of the application program to perform whatever access
synchronization is needed for any data structures managed by the program in the
RFM2g area.

E NOTE

Because RFM2g interface device names are dynamically assigned, users who have multiple RFM2g
devices in a chassis should exercise care when replacing RFM2g boards. Removing an RFM2g
interface may cause the name assigned to other RFM2g boards to be changed.

Operation

Most services available via the API require the use of an REFM2GHANDLE to
identify the connection between the application program and the opened RFM2g
interface.

Syntax
STDRFM2GCALL RFM2gOpen(char *DevicePath, RFM2GHANDLE *rh);

Parameters

DevicePath Path to special device file (I). Refer to your driver-specific
manual for the format of DevicePath.

rh Pointer to an REM2GHANDLE structure (I10).

18 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Return Values
Success

Failure

Example

RFM2G_SUCCESS

RFM2G_BAD_PARAMETER_1 — NULL or invalid DevicePath.
RFM2G_BAD_PARAMETER_2 — rhis NULL
RFM2G_HANDLE_NOT _NULL — *rh is not NULL.
RFM2G_OS_ERROR — Operating system (OS) returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_LOW_MEMORY — System refused request.
RFM2G_NO_RFM2G_BOARD — No RFM2g device found.

RFM2G_BAD_RFM2G_BOARD_ID — RFM2g device has bad board
ID.

See Section 1.2.2 Routine Code for Use with API Function Examples on page 12
for an example of the RFM2gOpen() command.

Related Commands

¢ RFM2gClose()

Application Program Interface (API) Library 19

1.5.2 RFM2gClosel)

The RFM2gClose() function allows an application program to terminate its
connection with the RFM2g services. Once the REFM2g handle is closed, all of the
facilities using that handle are no longer accessible, including the local RFM2g
memory, which may be mapped into the application program’s virtual memory
space.

Syntax
STDRFM2GCALL RFM2gClose(RFM2GHANDLE *rh);

Parameters

rh Initialized previously with a call to RFM2gOpen() (I).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0OS_ERROR — OS returned an error.

RFM2G_NOT_IMPLEMENTED — API function is not implemented in the
driver.

RFM2G_NOT_OPEN — Device is not open.
Example

See Section 1.2.2 Routine Code for Use with API Function Examples on page 12
for an example of the RFM2gClose() command.

Related Commands

e RFM2gOpen()

20 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6 RFM2g Configuration API Functions

The following API functions in the rfm2g_api.h file can be used to perform
configuration on the RFM2g driver.

Table 1-4 RFM2g Configuration API Functions

API Function Description

RFM2gGetConfig() Obtains a copy of the RFM2GCONFIG configuration structure.
RFM2gUserMemory() Maps RFM2g memory to the user space.

RFM2gUnMapUserMemory/() Unmaps RFM2g memory from the user space that was mapped using

RFM2gUnMapUserMemoryBytesi)

RFM2gUserMemory().

Maps RFM2g memory to the user space.

RFM2gUnmpaUserBytes

RFM2gNodelD()
RFM2gBoardIDI()

Unmaps RFM2g memory from the user space that was mapped using
RFM2gUserMemory().

Returns the RFM2g device node ID.

Returns the ID of the board corresponding to the passed-in handle.

RFM2gSize() Returns the total amount of memory space available on the RFM2g device.
RFM2gFirst() Returns the first available RFM2g offset.
RFM2gDeviceName() Returns the device name associated with an RFM2g handle.

RFM2gDlIVersion()

Returns the DLL version.

RFM2gDriverVersion() Returns the RFM2g device driver version.

RFM2gGetDMAThreshold) Returns the current DMA threshold value.

RFM2gSetDMAThreshold) Sets the transfer size at which reads and writes will use DMA.
RFM2gGetDMAByteSwapl) Returns the state of DMA byte swapping specified by RFM2gSetDMAThreshold().
RFM2gSetDMAByteSwapl) Sets the current ON/OFF state of DMA byte swapping.

RFM2gGetPIOByteSwapl) Returns the state of PIO byte swapping specified by RFM2gSetPIOByteSwapl).
RFM2gSetPIOByteSwapl) Sets the current ON/OFF state of PIO byte swapping.

Application Program Interface (API) Library 21

1.6.1 RFM2gGetConfigl)

The RFM2gGetConfig() function allows an application program to obtain a copy
of the RFM2GCONFIG hardware configuration structure created by the device
driver during its initialization.

The REM2GCONFIG structure is driver-specific. Refer to your driver’s
installation manual for structure definition information.

Syntax

STDRFM2GCALL RFM2gGetConfig(RFM2GHANDLE rh,
RFM2GCONFIG *Config);

Parameters

rh Handle to opened RFM2g device (I).

Config Pointer to RFM2GCONFIG structure to be filled (O).
Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented in the
driver.

RFM2G_BAD_PARAMETER_2 — Configis NULL.

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12 :

RFM2GCONF1G Rfm2gConfig;
result = RFM2gGetConfig(Handle, &Rfm2gConfigQ);

Related Commands

¢ RFM2gNodelD()

¢ RFM2gBoardID()

e RFM2gSize()

e RFM2gFirst()

¢ RFM2gDeviceName()
¢ RFM2gDIlVersion()

¢ RFM2gDriverVersion()

22 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6.2 RFM2gUserMemoryl)

The RFM2gUserMemory() function maps the Reflective Memory address space to

a user-level pointer, allowing direct access to RFM memory via pointer
de-referencing. All transfers using this pointer will use PIO and will not use
DMA.

Syntax

STDRFM2GCALL RFM2gUserMemory(RFM2GHANDLE rh,
volatile void **UserMemoryPtr,
RFM2G_UINT64 Offset,
RFM2G_UINT32 Pages);

Parameters
rh Handle to opened RFM2g device (I).
UserMemoryPtr Where to put the pointer to mapped RFM2g space (10).
g NOTE

The volatile keyword must be used to force an implementation to suppress optimization.
Offset Base byte offset of RFM2g memory to map (I).

Pages Number of pages to map (I).

g NOTE

Page size is system-dependent. Refer to your driver-specific manual for information on using this

parameter.
Return Values
Success RFM2G_SUCCESS
Failure RFM2G_NULL_DESCRIPTOR — rh is NULL.
RFM2G_0S_ERROR — OS returned an error.

RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented

in the driver.
RFM2G_BAD_ PARAMETER 2 — UserMemoryPtr is NULL.

RFM2G_BAD_PARAMETER_4 — Pages is 0.

RFM2G_MEM_NOT_MAPPED — System memory map call failed.

RFM2G_OUT_OF_RANGE — Mapping would go beyond end of

RFM2g memory.

Application Program Interface (API) Library 23

Example

Use the following code by inserting it into the example routine in the section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 Offset = 0;

RFM2G_UINT32 Pages = 1;

volatile RFM2G_UINT32 *pUser; /* Must be volatile */
result = RFM2gUserMemory(Handle,

(volatile void **)&pUser, Offset, Pages);

Related Commands

¢ RFM2gUnMapUserMemory()

24 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6.3 RFM2gUnMapUserMemoryl()

The RFM2gUnMapUserMemory() function unmaps a memory space mapped by
RFM2gUserMemoryy().

Syntax

STDRFM2GCALL RFM2gUnMapUserMemory(RFM2GHANDLE rh,
volatile void **UserMemoryPtr,
RFM2G_UINT32 Pages);

Parameters

rh Handle to opened RFM2g device (I).

UserMemoryPtr Pointer to mapped RFM2g space (1O).
7
E NOTE
The volatile keyword must be used to force an implementation to suppress optimization.

Pages The number of pages originally mapped to UserMemoryPtr (I).
Refer to your driver-specific manual for information on using
this parameter.

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — UserMemoryPtr is NULL.
RFM2G_BAD_PARAMETER_3 — Pages is 0.

RFM2G_OUT_OF_RANGE — Mapping would go beyond end of
RFM2g memory.

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 Offset = O;
RFM2G_UINT32 Pages = 1;
volatile RFM2G_UINT32 *pUser; /* Must be volatile */

result = RFM2gMapUserMemory(Handle,
(volatile void **)&pUser, Offset, Pages);
if (result == RFM2G_SUCCESS)
{
result = RFM2gUnMapUserMemory(Handle,
(volatile void **)&pUser, Pages);
}
}

Related Commands

¢ RFM2gUserMemory()
Application Program Interface (API) Library 25

1.6.4 RFM2gUserMemoryBytes|)

The RFM2gUserMemoryBytes() function maps the Reflective Memory address
space to a user-level pointer, allowing direct access to RFM memory via pointer
de-referencing. All transfers using this pointer will use PIO and will not use
DMA. This function is similar to the REM2gUserMemory() except that it takes the
number for bytes instead of the number for pages. User application should choose
this function over REM2gUserMemory() for portability across platforms with
different page sizes.

Syntax

STDRFM2GCALL RFM2gMapUserBytes(RFM2GHANDLE rh,

volatile void **UserBytePtr,

RFM2G_UINT64 Offset, RFM2G_UINT32 Bytes);
Parameters

rh Handle to opened RFM2g device (I).

UserMemoryPtr Where to put the pointer to mapped RFM2g space (10).

y NOTE

The volatile keyword must be used to force an implementation to suppress optimization.

Offset Base byte offset of RFM2g memory to map (I).

Bytes Number of bytes to map (I).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER 2 — UserBytePtr is NULL.
RFM2G_BAD_PARAMETER 4 — Bytes is 0.

RFM2G_MAP_NOT_ALLOWED — Invalid map Offset and Bytes
(Bytes size beyond size of memory on RFM2g device).

RFM2G_OUT_OF_RANGE — Mapping would go beyond end of
RFM2g memory.

26 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 Offset = 0O;
RFM2G_UINT32 Bytes = 4096;
volatile char *pUser; /* Must be volatile */

result = RFM2gUserMemoryBytes(Handle,
(volatile void **)&pUser, Offset, Bytes);

Related Commands

¢ RFM2gUnMapUserMemoryBytes()

Application Program Interface (API) Library 27

1.6.5 RFM2gUnMapUserMemoryBytes|)

The RFM2gUnMapUserMemoryBytes() function unmaps a memory byte space
mapped by REM2gUserMemoryBytes().

Syntax

STDRFM2GCALL RFM2gUnMapUserMemoryBytes(RFM2GHANDLE rh,
volatile void **UserMemoryPtr,
RFM2G_UINT32 Bytes);

Parameters
rh Handle to opened RFM2g device (I).
UserMemoryPtr Pointer to mapped RFM2g space (10).
7
E NOTE
The volatile keyword must be used to force an implementation to suppress optimization.

Bytes The number of bytes originally mapped to UserMemoryPtr (I).
Refer to your driver-specific manual for information on using
this parameter.

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rh is NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_ PARAMETER_2 — UserMemoryPtr is NULL.
RFM2G_BAD_PARAMETER_3 — Bytes s (.

RFM2G_OUT_OF_RANGE — Mapping would go beyond end of
RFM2g memory.

28 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 Offset = 0O;
RFM2G_UINT32 Bytes = 4096;
volatile char *pUser = NULL; /* Must be volatile */

result = RFM2gUserMemoryBytes(Handle,
(volatile void **)&pUser, Offset, Bytes);
ifT (result == RFM2G_SUCCESS)

{
result = RFM2gUnMapUserMemoryBytes(Handle,
(volatile void **)&pUser, Bytes);

Related Commands

¢ RFM2gUserMemoryBytes()

Application Program Interface (API) Library 29

1.6.6 RFM2gNodelDI)

The RFM2gNodelD() function returns the value of the RFM2g device node ID.
Each RFM2g device on an RFM2g network is uniquely identified by its node ID,
which is manually set by jumpers on the device when the RFM2g network is
installed. The driver determines the node ID when the device is initialized.

Syntax

Parameters

rh

NodeldPtr
Return Values
Success

Failure

Example

STDRFM2GCALL RFM2gNodelD(RFM2GHANDLE rh,
RFM2G_NODE *NodeldPtr);

Handle to currently opened RFM2g device (I).
Node ID of the currently opened RFM2g device (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — NodeldPtr is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_NODE Nodeld;

result = RFM2gNodelD(Handle, &Nodeld);

Related Commands

e RFM2gBoardID()
¢ RFM2gGetConfig()

30 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6.7 RFM2gBoardIDI)

The RFM2gBoardID() function returns the RFM2g interface model type. Each
RFM2g model type is uniquely identified by a numeric value assigned by

GE and recorded as a fixed constant in an REM2g hardware register. The driver
and support library read this value when the device is opened. The application
program uses the REM2gBoardID() number to obtain that value.

Syntax

STDRFM2GCALL RFM2gBoardID(RFM2GHANDLE rh,
RFM2G_UINT8*BoardIdPtr);

Parameters
rh Handle to currently opened RFM2g device (I).
BoardldPtr Board ID of the currently opened RFM2g device (O).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER 2 — BoardldPtr is NULL.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT8 Boardld;
result = RFM2gBoardID(Handle, &Boardld)
Related Commands

¢ RFM2gNodelD()
* RFM2gGetConfig|()

Application Program Interface (API) Library 31

1.6.8 RFM2gSizel)

The RFM2gSize() function returns the total amount of memory space available on
the RFM2g device. The application program may access RFM2g space between
offset REM2gFirst() and RFM2gSize()-1.

RFM2g boards may be configured with a variety of memory sizes. The device
driver and API library determine the amount of memory contained on an RFM2g
device as it is opened. An application program may then use REM2gSize() to
obtain the number of bytes on the board.

Syntax

STDRFM2GCALL RFM2gSize(RFM2GHANDLE rh, RFM2g_UINT32 *SizePtr);

Parameters

rh

SizePtr
Return Values
Success

Failure

Example

Handle to opened RFM2g device (I).
Pointer to variable that is filled with the REM2g size value (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rh is NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — SizePtr is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UNIT32 Size
result = RFM2GgSize(Handle, &Size);
ifT (result == RFM2G_SUCCESS)

{

printf("The RFM2g interface contains %lu bytes of

memory.\n"', Size);

}

Related Commands

* RFM2gGetConfig|()

e RFM2gFirst()

32 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6.9 RFM2gFirst()

The RFM2gFirst() function returns the first RFM2g offset available for use by an
application program. The entire memory space of the RFM2g device is mapped
into the virtual address space of the application program.

Syntax

STDRFM2GCALL RFM2gFirst(RFM2GHANDLE rh,

Parameters
rh

FirstPtr

Return Values
Success

Failure

Example

RFM2G_UINT32 *FirstPtr);

Handle to opened RFM2g device (I).

Pointer to the variable filled with the offset of the first location
of RFM memory (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rh is NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — FirstPtr is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 first;

result = RFM2gFirst(Handle, &first);

Related Commands

* RFM2gGetConfig|()

 RFM2gSize()

Application Program Interface (API) Library 33

1.6.10 RFM2gDeviceNamel)

The RFM2gDeviceName() function returns a null-terminated string containing
the first 64 characters of the device file name associated with the given RFM2g file

handle.
Syntax

STDRFM2GCALL RFM2gDeviceName(RFM2GHANDLE rh,

Parameters
rh

NamePtr

Return Values
Success

Failure

Example

char *NamePtr);

Initialized previously with a call to RFM2gOpen() (I).

Pointer to the char array that is filled with the device filename
for the given RFM2g device (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — NamePtr is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_CHAR name[64];
name[0] = O;

result = RFM2gDeviceName(Handle, name);
if(result == RFM2G_SUCCESS)

{
}

printf("'RFM2gDeviceName : %s\n', name);

Related Commands

¢ RFM2gGetConfig()

34 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6.11 RFMZ2gDlIVersionl)

The RFM2gDIlVersion() function returns an ASCII string with which an
application program can determine the version of the DLL or API library. This
string contains the production release level of the library and is unique between
different versions of the API library.

Syntax

STDRFM2GCALL RFM2gDll1Version(RFM2GHANDLE rh,

Parameters
rh

VersionPtr

Return Values
Success

Failure

Example

char *VersionPtr);

Handle to opened RFM2g device (I).

Pointer to where the string containing the production release
level of the DLL or API library (O) will be copied.

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — VersionPtr is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_CHAR version[64];
version[0] = O;

result = RFM2gDIIVersion(Handle, version);
if(result == RFM2G_SUCCESS)

{
}

printf(“RFM2gDI IVersion:%s\n”, version);

Related Commands

e RFM2gDriverVersion()
¢ RFM2gGetConfig()

Application Program Interface (API) Library 35

1.6.12 RFM2gDriverVersion()

The RFM2gDriverVersion() function returns an ASCII string with which an
application program can determine the GE production release version of the
underlying RFM2g device driver.

Syntax

STDRFM2GCALL RFM2gDriverVersion(RFM2GHANDLE rh,

Parameters
rh

VersionPtr

Return Values
Success

Failure

Example

char *VersionPtr);

Handle to opened RFM2g device (I).

Pointer to where the string containing the production version
of the RFM2g device driver will be copied (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — VersionPtr is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_CHAR drvVersion[64];
drvVersion[0] = O;

result = RFM2gDriverVersion(Handle, drvVersion);
if(result == RFM2G_SUCCESS)

{
}

printf("'RFM2gDriverVersion : %s\n', drvVersion);

Related Commands

e RFM2gDIlVersion()
¢ RFM2gGetConfig()

36 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6.13 RFM2gGetDMAThreshold()

The RFM2gGetDMAThreshold() function returns the length of the current
minimum DMA /O request of the device driver. The RFM2g device driver will
use the bus master DMA feature present on some RFM2g devices if an I/O request
qualifies (i.e. if the size is larger than or equal to the Threshold). One of the
criteria for performing the DMA is that the I/O transfer be long enough that the
time saved by performing the DMA offsets the overhead processing involved
with initializing the DMA itself. The default DMA threshold is driver-dependent.
Refer to your driver-specific manual for the default DMA threshold value.

This command is useful since the amount of this overhead can vary between host
computer configurations. The application program can set a new threshold using
the RFM2gGetDMAThreshold() function.

Syntax

STDRFM2GCALL RFM2gGetDMAThreshold(RFM2GHANDLE rh,
RFM2G_UINT32 *Threshold);

Parameters

rh Handle to opened RFM2g device (I).

Threshold Pointer to the variable where the current DMA threshold value
will be copied (O).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.

RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER 2 — Threshold is NULL.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 Threshold;
result = RFM2gGetDMAThreshold(Handle, &Threshold);
Related Commands

¢ RFM2gSetDMAThreshold()
¢ RFM2gRead()
* RFM2gWrite()

Application Program Interface (API) Library 37

1.6.14 RFM2gSetDMAThresholdl)

The RFM2gSetDMAThreshold() function sets the transfer size at which reads and
writes will use DMA to transfer data. If RFM2gRead() or REM2gWrite() is called,
DMA will be used if the size of the data is larger than or equal to the Threshold.
A threshold can be set per device.

The amount of cycles taken to set up a DMA transfer can increase the transfer
time for small transfer sizes. The transfer size for which DMAs are more efficient
than standard transfers varies, depending on the system.

DMA is generally preferred over the PIO method for transferring data. PIO
operations require the usage of the CPU to process the transfer, while DMA
enables the Reflective Memory controller to access system memory while leaving
the CPU’s resources unaffected. However, the best value to use (i.e. PIO vs. DMA)
is system-dependent. The RFM2g driver performs approximately five PCI
accesses to set up and process a DMA request and generates an interrupt on
completion of the DMA operation. In general, DMA is the preferred method if a
PIO transfer requires more than six to ten PCI cycles to complete.

A Threshold value of OXFFFFFFFF specifies that DM As will never be used for
data transfer.

% NOTE

The default value for the DMA Threshold is driver-dependent and should be changed only if
recommended by the driver's documentation. Refer to your driver-specific manual for more
information, including the default value.

Syntax

STDRFM2GCALL RFM2gSetDMAThreshold(RFM2GHANDLE rh,
RFM2G_UINT32 Threshold);

Parameters
rh Handle to currently opened RFM2g device (I).
Threshold New DMA threshold value (I).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

38 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

/* Set DMA threshold to 256 bytes */
result = RFM2gSetDMAThreshold(Handle, 256);

Related Commands

e RFM2gGetDMAByteSwap()
¢ RFM2gWrite()
o RFM2 gRead ()

Application Program Interface (API) Library 39

1.6.15 RFM2gGetDMAByteSwapl)

The RFM2gGetDMAByteSwap() function returns the state of DMA byte
swapping hardware, which is specified by the RFM2gSetDMAByteSwap()

function.

Syntax

STDRFM2GCALL RFM2gGetDMAByteSwap(RFM2GHANDLE rh,

Parameters
rh

byteSwap

Return Values
Success

Failure

Example

RFM2G_BOOL *byteSwap)

Handle to currently opened RFM2g device (I).

Pointer to where the state of the DMA byte swap hardware is
written (RFM2G_TRUE when DMA byte swapping is ON, or
RFM2G_FALSE when DMA byte swapping is OFF) (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — byteSwap is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL byteSwap;

result = RFM2gGetDMAByteSwap(Handle, &byteSwap);

Related Commands

¢ RFM2gSetDMAByteSwap()
e RFM2gWrite()
e RFM2gRead()

40 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6.16 RFM2gSetDMAByteSwapl)

The RFM2gSetDMAByteSwap() function enables or disables byte swapping DMA
transfers to or from an REM2g device. This function provides 4-byte swaps only
(i.e. byte swapping based on size is not performed by the REM2g device).

g NOTE

DMA byte swapping may be enabled by default when the driver has been built for use on big
endian systems. Refer to your driver-specific manual for the default setting of DMA byte swapping.

Syntax

STDRFM2GCALL RFM2gSetDMAByteSwap(RFM2GHANDLE rh,
RFM2G_BOOL byteSwap)

Parameters
rh Handle to currently opened RFM2g device (I).
byteSwap The state of the DMA byte swap (RFM2G_TRUE=>ON or

RFM2G_FALSE=>OFF) (I).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL byteSwap = RFM2G_TRUE; /* Turn byte swap on */
result = RFM2gSetDMAByteSwap(Handle, byteSwap);

Related Commands

e RFM2gGetDMAByteSwap()
e RFM2gWrite()
e RFM2 gRead ()

Application Program Interface (API) Library 41

1.6.17 RFM2gGetPIOByteSwapl)

The RFM2gGetPIOByteSwap() function returns the state of PIO byte swapping,
which is specified using the REM2gSetPIOByteSwap() function.

Refer to section 1.7.1 Data Transfer Considerations, page 44 for information on
byte swapping and PIO.

Syntax

STDRFM2GCALL RFM2gGetP10ByteSwap(RFM2GHANDLE rh,
RFM2G_BOOL *byteSwap)

Parameters
rh Handle to currently opened RFM2g device (I).
byteSwap Pointer to where the state of the PIO byte swap is written

(RFM2G_TRUE when PIO byte swapping is ON, or
RFM2G_FALSE when PIO byte swapping is OFF) (O).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — byteSwap is NULL.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL byteSwap;
result = RFM2gGetP10ByteSwap(Handle, &byteSwap);

Related Commands

¢ RFM2gSetPIOByteSwap()

¢ RFM2gRead()

¢ RFM2gWrite()

¢ RFM2gUserMemory()

¢ RFM2gPeek8(), REM2gPeek16(), REM2gPeek32() and RFM2gPeek64()
¢ RFM2gPoke8(), REM2gPokel6(), RFM2gPoke32() and RFM2gPoke64()

42 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.6.18 RFMZ2gSetPIOByteSwapl)

The RFM2gSetPIOByteSwap() function enables or disables byte swapping of PIO
transfers to or from an REM2g device. This function provides 4-byte swaps (i.e.
byte swapping based on size is not performed by the RFM2g device).

Refer to section 1.7.1 Data Transfer Considerations, page 44 for information on
byte swapping and PIO.

% NOTE

PIO byte swapping is enabled by default when the driver has been built for use on big endian
systems. Refer to your driver-specific manual for the default setting of PIO byte swapping.

Syntax

STDRFM2GCALL RFM2gSetP10ByteSwap(RFM2GHANDLE rh,
RFM2G_BOOL byteSwap)

Parameters
rh Handle to currently opened RFM2g device (I).
byteSwap The state of the PIO byte swap (RFM2G_TRUE=>ON or

RFM2G_FALSE=>OFF) (I).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12.

RFM2G_BOOL byteSwap = RFM2G_TRUE /* Turn byte swap on */
result = RFM2gSetP10ByteSwap(Handle, byteSwap);
Related Commands

e RFM2gGetPIOByteSwap()

e RFM2gRead()

e RFM2gWrite()

¢ RFM2gUserMemory()

¢ RFM2gPeek8(), RFM2gPeek16(), RFM2gPeek32() and RFM2gPeek64()
e RFM2gPoke8(), REM2gPokel6(), RFM2gPoke32() and RFM2gPoke64()

Application Program Interface (API) Library 43

1.7 RFM2g Data Transfer APl Functions

The following API functions in the rfm2g_api.h file can be used to transfer data

with the RFM2g driver.

Table 1-5 RFM2g Data Transfer API Functions

API Function Description

RFM2gRead() Reads one or more bytes starting at an offset in Reflective Memory.
RFM2gWritel() Writes one or more bytes starting at an offset in Reflective Memory.
RFM2gPeeks|(), RFM2gPeek16i), Reads a single byte, word or longword from an offset in Reflective Memory.

RFM2gPeek32() and RFM2gPeek64()

RFM2gPoke8(), RFM2gPoke16(), Writes a single byte, word or longword to an offset in Reflective Memory.
RFM2gPoke32() and RFM2gPoke64()

1.7.1 Data Transfer Considerations

The following information should be considered when transferring data using the
API commands in this section, pointers obtained from RFM2gUserMemory() or
any of the following rfm2g_util.c command line interpreter commands:

* peek8

* peekl6

¢ peek32

* peek64

¢ poke8

* pokel6

* poke32

¢ poke64

¢ read

* write
See Chapter 2 *rfm2g_util.c Utility Program, page 98 for more information on
the command line interpreter.

Big Endian and Little Endian Data Conversions

x86 (Intel-based) processors use little endian byte ordering when storing
sequences of bytes while other processors, such as the Sun family of SPARC
processors and PowerPC, use the big endian method.

The RFM2g API accesses Reflective Memory using little endian byte ordering. If
some systems on the Reflective Memory network are using little endian ordering
and others are using big endian ordering, you may have to perform the necessary
byte swapping prior to using the REM2g driver with the multibyte data shared
between the systems, depending on the DMA and PIO byte swap settings. See
section 1.6.16 RFM2gSetDMAByteSwap(), page 41 and section

1.6.18 RFM2gSetPIOByteSwap(), page 43 for more information.

44 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Using Direct Memory Access (DMA)

Based on the size of the data, the user must determine whether or not to use DMA
to transfer data. DMA bypasses a system’s CPU, allowing the system CPU to
continue execution while system memory is being accessed by the REM2g device.

An application program will use DMA according to its own I/O requirements.
The RFM2g driver will attempt to fulfill data moving requests using the bus
master DMA feature of the REM2g interfaces if the transfer is greater than the
current DMA threshold.

If the request does not meet the constraints listed above, the driver will move the
data using programmed I/O.

Some systems may require cache management routines to be called before and/or
after DMA accesses, and may also place restrictions on the size of the DMA
transfer. Refer to your driver-specific manual to determine whether or not cache
management functions should be called and for any restrictions placed on DMA
transfers. See section 1.6.15 RFM2gGetDMAByteSwap(), page 40 for more
information.

Application Program Interface (API) Library 45

1.7.2 RFM2gReadl)

The RFM2gRead() function is used to transfer one or more bytes from RFM2g
memory to system memory.

The RFM2g driver attempts to fulfill the REM2gRead() request using the bus
master DMA feature available on the RFM2g device. The driver will move the
data using the DMA feature if the length of the I/O request is at least as long as the
minimum DMA threshold.

g NOTE

See section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte
data.

The DMA feature can be used as an alternative method for transferring data. See section Using
Direct Memory Access (DMA), page 45 for more information.

If byte swapping is enabled on the RFM2g device, the Offset and Length must be width aligned.

If the RFM2g device does not support the bus master DMA feature, or if the I/O
request does not meet the constraints listed above, then the driver will move the
data using PIO.

Refer to section 1.7.1 Data Transfer Considerations, page 44 for information on
byte swapping.

An application program must not attempt to access the RFM2g contents at an
offset less than that returned by the RFM2gFirst() function.

Syntax

STDRFM2GCALL RFM2gRead(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
void *Buffer,
RFM2G_UINT32 Length);

Parameters

rh Handle to opened RFM2g device (I).

Offset Width-aligned offset to Reflective Memory at which to begin
the read (I). Valid offset values are 0x0 to Ox3FFFFFF for 64MB
cards, 0x0 to Ox7FFFFFF for 128MB cards and 0x0 to OxOFFFFFF
for 256MB cards.

Buffer Pointer to where data is copied from Reflective Memory (O).

Length Number of bytes to transfer (I). Valid values are 0 to ([RFM

Size] - rfmOffset).

46 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_3 — Buffer is NULL.

RFM2G_BAD_PARAMETER_4 — Length is not aligned to data
width.

RFM2G_OUT_OF_RANGE — Offset and Length is beyond the
end of memory on RFM2G device.

RFM2G_DMA_FAILED — DMA failed.

RFM2G_UNALIGNED_OFFSET — Offset not aligned with data
size.

RFM2G_READ_ERROR — Data not aligned and/or system error.
RFM2G_LSEEK_ERROR — Failure of Iseek(2) command.

RFM2G_UNAL IGNED_ADDRESS — Buffer is not aligned to data
width.

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT8 Buffer[128];
RFM2G_UINT32 rfmBytes = sizeof(Buffer);
RFM2G_UINT32 Offset = 0;

result = RFM2gRead(Handle, Offset, Buffer, rfmBytes);

Related Commands

¢ RFM2gWrite()

¢ RFM2gSetDMAThreshold()
¢ RFM2gSetDMAByteSwap()
¢ RFM2gSetPIOByteSwap()

Application Program Interface (API) Library 47

1.7.3 RFM2gWritel)

The RFM2gWrite() function transfers one or more I/O data buffers from the
application program to the REM2g node beginning at the specified aligned
memory offset.

If the RFM2g interface supports the bus master DMA feature and the I/O request
meets certain constraints, the RFM2g device driver will use DMA to perform the
I/O transfer. See the discussion for the REM2gRead() function for a description of
the constraints for the DMA transfer support.

The RFM2gWrite() writes one or more bytes starting at an offset in Reflective
Memory (i.e. allows an application program to output (write) arbitrary-sized I/O
buffers). The driver will move the data using the DMA feature if the length of the
I/O request is at least as long as the minimum DMA threshold.

% NOTE

See section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte
data.

The DMA feature can be used as an alternative method for transferring data. See section Using
Direct Memory Access (DMA), page 45 for more information.

If byte swapping is enabled on the RFM2g device, the Offset and Length must be width aligned.
Syntax

STDRFM2GCALL RFM2gWrite(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
void *Buffer,
RFM2G_UINT32 Length);

Parameters

rh Handle to opened RFM2g device (I).

Offset Width-aligned offset in Reflective Memory at which to begin
the write (I). Valid offset values are 0x0 to Ox3FFFFFF for 64MB
cards, 0x0 to Ox7FFFFFF for 128MB cards and 0x0 to
OxOFFFFFFF for 256MB cards.

Buffer Pointer to where data is copied to Reflective Memory (I).

Length Number of bytes units to write (I). Valid values are 0 to ([RFM

Size] - rfmOffset).

48 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Return Values
Success

Failure

Example

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_3 — Buffer is NULL.

RFM2G_BAD_PARAMETER_4 — Length is not aligned to data
width.

RFM2G_OUT_OF_RANGE — Offset and Length is beyond the
end of memory on RFM2G device.

RFM2G_DMA_FAILED — DMA failed.

RFM2G_UNALIGNED_OFFSET — Offset not aligned with data
size.

RFM2G_WRITE_ERROR — Data not aligned and/or system error.
RFM2G_READ_ERROR — Data not aligned and/or system error.
RFM2G_LSEEK_ERROR — Failure of l1seek(2) command.

RFM2G_UNALIGNED_ADDRESS — Buffer is not aligned to data
width.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT8 Buffer[4];

RFM2G_UINT32 rfmBytes =
RFM2G_UINT32 Offset = O;

sizeof(Buffer);

Buffer[0] = O;
Buffer[1] = 1;
Buffer[2] = 2;
Buffer[3] = 3;

result = RFM2gWrite(Handle, Offset, (void*)Buffer,
rfmBytes);

Related Commands

e RFM2gRead()

¢ RFM2gSetDMAThreshold()
¢ RFM2gGetDMAByteSwap()
¢ RFM2gSetPIOByteSwap()

Application Program Interface (API) Library 49

1.7.4 RFM2gPeek8(), RFM2gPeek16(), RFM2gPeek32() and
RFM2gPeek64()

The RFM2gPeek() functions return the contents of the specified REM2g offset. The
specified memory offset is accessed as either an 8-bit byte, a 16-bit word, a 32-bit
longword or a 64-bit longword.

g NOTE

See section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte
data.

Operation

The RFM2gPeek () functions return the contents of the indicated RFM2g memory
location and make no attempt to lock the RFM2g during the access.

Refer to section 1.7.1 Data Transfer Considerations, page 44 for information on
byte swapping.

Syntax

STDRFM2GCALL RFM2gPeek8(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
RFM2G_UINT8 *Value);

STDRFM2GCALL RFM2gPeek16(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
RFM2G_UINT16 *Value);

STDRFM2GCALL RFM2gPeek32(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
RFM2G_UINT32 *Value);

STDRFM2GCALL RFM2gPeek64(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
RFM2G_UINT64 *Value);

Parameters

rh Handle to opened RFM2g device (I).

Offset Offset in Reflective Memory from which to read (I).
Value Pointer to where the value is read from Offset (O).

Return Values

Success RFM2G_SUCCESS

50 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_3 — Value is NULL.

RFM2G_OUT_OF_RANGE — Offset is beyond the end of RFM2G
memory.

RFM2G_UNALIGNED_OFFSET — Offset not aligned with data
size.

Example (RFM2gPeek8())

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT8 Value;
RFM2G_UINT32 Offset = O;

result = RFM2gPeek8(Handle, Offset, &Value);

Example (RFM2gPeek16())

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT16 Value;
RFM2G_UINT32 Offset = O;

result = RFM2gPeekl6(Handle, Offset, &Value);

Example (RFM2gPeek32())

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 Value;
RFM2G_UINT32 Offset = O;

result = RFM2gPeek32(Handle, Offset, &Value);

Example (RFM2gPeek64())

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12 :

RFM2G_UINT64 Value;
RFM2G_UINT32 Offset = O;

result = RFM2gPeek64(Handle, Offset, &Value);

Related Commands

¢ RFM2gPoke8(), REM2gPokel6(), RFM2gPoke32() and RFM2gPoke64()
* RFM2gSetPIOByteSwap()

Application Program Interface (API) Library 51

1.7.5 RFM2gPoke8(), RFM2gPokel6(), RFM2gPoke32() and
RFM2gPoke64()

The RFM2gPoke() functions are used to update a value in the REM2g using either
an 8-bit byte, a 16-bit word, a 32-bit longword or a 64-bit longword access. No
attempt at RFM2g shared memory locking is performed.

g NOTE

See section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte
data.

Syntax

STDRFM2GCALL RFM2gPoke8(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
RFM2G_UINT8 Value);

STDRFM2GCALL RFM2gPoke16(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
RFM2G_UINT16 Value);

STDRFM2GCALL RFM2gPoke32(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
RFM2G_UINT32 Value);

STDRFM2GCALL RFM2gPoke64(RFM2GHANDLE rh,
RFM2G_UINT32 Offset,
RFM2G_UINT64 Value);

Parameters

rh Handle to opened RFM2g device (I).

Offset Offset in Reflective Memory from which to read (I).
Value Value written to Offset (I).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_UNALIGNED_OFFSET — Offset not aligned with data
size.

52 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Example (RFM2gPoke8())

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT8 Value = 0O;
RFM2G_UINT32 Offset = O;

result = RFM2gPoke8(Handle, Offset, Value);

Example (RFM2gPoke16())

Use the following code by inserting it into the example routine in Section 1.2.2
Routine Code for Use with API Function Examples on page 12:

RFM2G_UINT16 Value = O;
RFM2G_UINT32 Offset = O;

result = RFM2gPokel6(Handle, Offset, Value);

Example (RFM2gPoke32())

Use the following code by inserting it into the example routine in Section 1.2.2
Routine Code for Use with API Function Examples on page 12:

RFM2G_UINT32 Value = O;
RFM2G_UINT32 Offset = O;

result = RFM2gPoke32(Handle, Offset, Value);

Example (RFM2gPoke64())

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT64 Value = 0;
RFM2G_UINT32 Offset = O;

result = RFM2gPoke64(Handle, Offset, Value);

Related Commands

* RFM2gPeek8(), RFM2gPeek16(), RFM2gPeek32() and RFM2gPeek64()
* RFM2gSetPIOByteSwap()

Application Program Interface (API) Library 53

1.8 RFM2g Interrupt Event APl Functions

The following API functions in the rfm2g_api.h file can be used to perform event-
related operations with the RFM2g driver.

Table 1-6 RFM2g Interrupt Event API Functions

API Function Description

RFM2gEnableEvent() Enables reception of an RFM2g interrupt event.

RFM2gDisableEvent() Disables the reception of an RFM2g event.

RFM2gSendEvent|() Transmits the specified RFM2g interrupt event to one or all other RFM2g node IDs.
RFM2gWaitForEvent() Blocks the calling process until an occurrence of the specified RFM2g interrupt

event is received or a timeout (if enabled) expires.

RFM2gEnableEventCallbacki()
RFM2gDisableEventCallback()
RFM2gClearEvent()
RFM2gCancelWaitForEvent()

Enables the interrupt notification for one event on one board.
Disables the interrupt notification for one event on one board.
Flushes all pending events for a specified event type.

Cancels any pending RFM2gWaitForEvent() calls for the specified event type.

RFM2gClearEventCount()
RFM2gGetEventCount()

Clears the event counter for an interrupt event type.

Gets the number of interrupt events for a given event type.

54 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.8.1 RFM2gEnableEvent()

RFM2g network interrupts are not enabled by default. The RFM2gEnableEvent()
function enables an event so an interrupt can be generated on the receiving node.
Only RFM2g interrupt events listed in the EventType parameter description (see
the Parameter section below) may be controlled in this way. User applications are
notified of received events by using the REM2gWaitForEvent() or
RFM2gEnableEventCallback() function.

The behavior of REM2gEnableEvent() varies, depending on the following
scenarios regarding REM2gEnableEvent():

Table 1-7 RFM2gEnableEvent()

Existing Condition(s) RFM2gEnableEvent() Behavior
The event is disabled. RFM2G_SUCCESS

The event is enabled. RFM2G_SUCCESS

Syntax

STDRFM2GCALL RFM2gEnableEvent(RFM2GHANDLE rh,
RFM2GEVENTTYPE EventType);

Parameters
rh Handle to opened RFM2g device (I).
EventType Specifies which interrupt event to enable (I).
Interrupts correlate to the following event IDs:
Event Interrupt Event ID
Reset Interrupt RFM2GEVENT_RESET
Network Interrupt 1 RFM2GEVENT_INTR1
Network Interrupt 2 RFM2GEVENT_INTR2
Network Interrupt 3 RFM2GEVENT_INTR3
Network Interrupt 4 RFM2GEVENT_INTR4
(Init Interrupt)
Bad Data Interrupt RFM2GEVENT_BAD_DATA
RX FIFO Full Interrupt RFM2GEVENT_RXFIFO_FULL
Rogue Packet Detected and
Removed Interrupt RFM2GEVENT_ROGUE_PKT
RX FIFO Almost Full Interrupt RFM2GEVENT_RXFIFO_AFULL
Sync Loss Occurred Interrupt RFM2GEVENT_SYNC_LOSS
Memory Write Inhibited RFM2GEVENT_MEM_
WRITE_INHIBITED
Memory Parity Error RFM2GEVENT_LOCAL_

MEM_PARITY_ERR

Application Program Interface (API) Library 55

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — EventType is invalid.
RFM2G_DRIVER_ERROR — Internal driver error.

RFM2G_ALREADY_ENABLED — The specified event is already
enabled.

Example

The following example code enables user interrupt event 1. Use the following
code by inserting it into the example routine in section 1.2.2 Routine Code for Use
with API Function Examples, page 12:

result = RFM2gEnableEvent(Handle, RFM2GEVENT_INTR1);

Related Commands

¢ RFM2gDisableEvent()

¢ RFM2gClearEvent()

¢ RFM2gSendEvent()

e RFM2gWaitForEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gEnableEventCallback()
¢ RFM2gDisableEventCallback()

56 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.8.2 RFM2gDisableEvent()

The RFM2gDisableEvent() function disables the generation of a CPU interrupt
when an RFM2g event is received on the current node.

The behavior of REM2gDisableEvent() varies, depending on the following
scenarios regarding REM2gEnableEvent(), RFM2gEnableEventCallback() and
RFM2gWaitForEvent():

Table 1-8 RFM2gDisableEvent()

Existing Condition(s) RFM2gDisableEvent() Behavior

The event is not enabled. RFM2G_SUCCESS

The event is enabled without a pending callback or RFM2G_SUCCESS
RFM2gWaitForEvent().

The event is enabled and a callback is registered. RFM2G_SUCCESS — The callback is not affected. The callback
will not occur until the event is enabled and received.

The event is enabled with a pending RFM2G_SUCCESS — RFM2gWaitForEvent() remains pending.
RFM2gWaitForEvent|().

g NOTE

RFM2gDisableEvent() will disable an event only if it was enabled using the same handle.

Even if disabled, the RFM2g device continues storing received events in an
onboard FIFO until enabled or cleared.

Syntax

STDRFM2GCALL RFM2gDisableEvent(RFM2GHANDLE rh,
RFM2GEVENTTYPE EventType);

Parameters
rh Handle to opened RFM2g device (I).
EventType Specifies which interrupt event to disable (I).
Interrupts correlate to the following event IDs:
Interrupt Event ID
Reset Interrupt RFM2GEVENT_RESET
Network Interrupt 1 RFM2GEVENT_INTR1
Network Interrupt 2 RFM2GEVENT_INTR2
Network Interrupt 3 RFM2GEVENT_INTR3
Network Interrupt 4
(Init Interrupt) RFM2GEVENT_INTR4
Bad Data Interrupt RFM2GEVENT _BAD_DATA
RX FIFO Full Interrupt RFM2GEVENT_RXFIFO_FULL
Rogue Packet Detected
and Removed Interrupt RFM2GEVENT_ROGUE_PKT
RX FIFO Almost Full Interrupt RFM2GEVENT_RXFIFO_AFULL
Sync Loss Occurred Interrupt RFEM2GEVENT_SYNC_LOSS
Memory Write Inhibited RFM2GEVENT_MEM
_WRITE_INHIBITED
Memory Parity Error RFM2GEVENT_LOCAL

_MEM_PARITY_ERR

Application Program Interface (API) Library 57

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — EventType is invalid.
RFM2G_DRIVER_ERROR — Internal driver error.
Example

The following example code disables user interrupt 1. Use the following code by
inserting it into the example routine in section 1.2.2 Routine Code for Use with
API Function Examples, page 12:

result = RFM2gDisableEvent(Handle, RFM2GEVENT_INTR1);

Related Commands

¢ RFM2gEnableEvent()

¢ RFM2gClearEvent()

¢ RFM2gSendEvent()

¢ RFM2gWaitForEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gEnableEventCallback()
¢ RFM2gDisableEventCallback()

58 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.8.3 RFM2gSendEvent()

The RFM2gSendEvent() function sends an interrupt event and a 32-bit longword
value to another node. Five RFM2g interrupt event types are available for an
application program to use in signaling events to other RFM2g nodes.

Syntax

RFM2G_STATUS RFM2gSendEvent(RFM2GHANDLE rh,

RFM2G_NODE ToNode,
RFM2GEVENTTYPE EventType,
RFM2G_UINT32 ExtendedData);

Parameters
rh

ToNode

% NOTE

Handle to opened RFM2g device (I).

Who will receive the interrupt event (I) (REM2G_NODE_ALL

sends the event to all nodes).

A node cannot send an event to itself.

EventType

ExtendedData
Return Values
Success

Failure

The type of interrupt event to send (I).
Interrupts correlate to the following event IDs:

Interrupt

Reset Interrupt

Network Interrupt 1
Network Interrupt 2
Network Interrupt 3
Network Interrupt 4

User-defined data (I).

RFM2G_SUCCESS

Event ID

RFM2GEVENT_RESET
RFM2GEVENT_INTR1
RFM2GEVENT_INTR2
RFM2GEVENT_INTR3
RFM2GEVENT_INTR4

RFM2G_NULL_DESCRIPTOR — rhis NULL.

RFM2G_0S_ERROR — OS returned an error.

RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented

in the driver.

RFM2G_BAD_PARAMETER_2 — Invalid ToNode.

RFM2G_BAD_PARAMETER_3 — Invalid EventType.

RFM2G_DRIVER_ERROR — Internal driver error.

RFM2G_NOT_OPEN — Device is not open.

RFM2G_NODE_ID_SELF — Cannot send event to self.

Application Program Interface (API) Library 59

Example

The following example code sends user interrupt 1. Use the following code by
inserting it into the example routine in section 1.2.2 Routine Code for Use with
API Function Examples, page 12:

/* Send interrupt event 1 to node 0 with extended data
value 0 */

result = RFM2gSendEvent(Handle, Ox0, RFM2GEVENT_INTR1,
0x0);

Related Commands

¢ RFM2gEnableEvent()

¢ RFM2gDisableEvent()

¢ RFM2gClearEvent()

e RFM2gWaitForEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gEnableEventCallback()
¢ RFM2gDisableEventCallback()

60 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.8.4 RFM2gWaitForEventi)

The RFM2gWaitForEvent() function allows an application program to determine
that an RFM2g interrupt event has been received. The RFM2gWaitForEvent()
function blocks until the next REM2g interrupt event of the requested type has
been received, then returns.

The specified event is disabled if one of the following error events occurs, and the
RFM2gEnableEvent() must be called to re-enable the interrupt:

Error Event ID Description
REM2GEVENT_BAD_DATA Bad Data Interrupt
RFM2GEVENT_SYNC_LOSS Sync Loss Occurred Interrupt

g NOTE

Ensure that events do not interrupt continuously if they are re-enabled.

The behavior of REM2gWaitForEvent() varies, depending on the following
scenarios regarding REM2gWaitForEvent(), RFM2gEnableEventCallback(),
RFM2gDisableEvent() and RFM2gClose():

Table 1-9 RFM2gWaitForEvent()
Existing Conditionl(s) RFM2gWaitForEvent() Behavior

The event is enabled. RFM2G_SUCCESS — Event received
RFM2G_TIMED_OUT — Event not received before timeout
RFM2G_WAIT_EVENT_CANCELED — User called
RFM2gCancelWaitForEvent|()

The event is not enabled. RFM2G_SUCCESS — Event received
RFM2G_TIMED-OUT — Event not received before timeout
RFM2G_WAIT_EVENT_CANCELED — User called
RFM2gCancelWaitForEvent()

RFM2gCancelWaitForEvent) is called for the event. RFM2G_SUCCESS — Event received
RFM2G_TIMED_OUT — Event not received before timeout
RFM2G_WAIT_EVENT_CANCELED — User called
RFM2gCancelWaitForEvent|()

The event is enabled and a callback is registered. RFM2G_EVENT_IN_USE
Another thread is pending on RFM2gWaitForEvent(). RFM2G_EVENT_IN_USE

Syntax

RFM2G_STATUS RFM2gWaitForEvent(RFM2GHANDLE rh,
RFM2GEVENTINFO *Eventinfo);

Parameters

rh Handle to opened RFM2g device (I).

Eventinfo Pointer to RFM2GEVENTINFO structure containing the event
type and time, in milliseconds, to wait for the event before
returning.

Application Program Interface (API) Library 61

The following is the rfm2gEventInfo structure used by the Eventlnfo parameter

of RFM2gWaitForEvent():

typedef struct rfm2gEventinfo

{
RFM2G_UINT32

RFM2G_NODE

RFM2GEVENTTYPE Event;

RFM2G_UINT32
void *
} RFM2GEVENTINFO;

ExtendedInfo
Nodeld

Event

Timeout

pDrvSpec

ExtendedInfo; /* Data passed with event

Nodeld; /* Source Node

/* Event type
Timeout; /* timeout value to wait for event mSec
pDrvSpec; /* Driver specific

The rfm2gEventinfo structure parameters are:

User data that accompanies an event (O).

RFM node that sent the event (O).

Specifies which interrupt event to wait upon (I).
Interrupts correlate to the following event IDs:

Interrupt

Reset Interrupt

Network Interrupt 1

Network Interrupt 2

Network Interrupt 3

Network Interrupt 4

(Init Interrupt)

Bad Data Interrupt

RX FIFO Full Interrupt

Rogue Packet Detected
and Removed Interrupt

RX FIFO Almost Full
Interrupt

Sync Loss Occurred
Interrupt

Memory Write Inhibited

Memory Parity Error

Event ID

RFM2GEVENT_RESET
RFM2GEVENT_INTR1
RFM2GEVENT _INTR2
RFM2GEVENT _INTR3

RFM2GEVENT_INTR4
RFM2GEVENT_BAD_DATA
RFM2GEVENT_RXFIFO_FULL

RFM2GEVENT_ROGUE_PKT
RFM2GEVENT_RXFIFO_AFULL

RFM2GEVENT_SYNC_LOSS

RFM2GEVENT_MEM
_WRITE_INHIBITED

RFM2GEVENT_LOCAL
_MEM_PARITY_ERR

Indicates the timeout, in milliseconds, to wait for the event
before returning (I). Non-zero values use a timeout, as
determined by the following criteria:

Value

RFM2G_INFINITE_TIMEOUT

RFM2G_NOWAIT
[value]

Description

Wait forever for event to occur

Do not wait for event to occur.

Number of milliseconds to
wait for event to occur.

Driver-specific data that accompanies an event (I). Refer to
your driver-specific manual for more information.

62 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

*/
*/
*/
*/
*/

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — Eventinfo is NULL or
Eventlnfo event has invalid event type.

RFM2G_EVENT_IN_USE — Event is already being waited on.
RFM2G_TIMED_OUT — Timed out waiting for event.

RFM2G_WAIT_EVENT_CANCELED
RFM2gCance lWaitForEvent() called for this event.

RFM2G_DRIVER_ERROR — Internal driver error.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2GEVENTINFO info;

info.EventType = RFM2GEVENT_INT1;
info.mSecToWait = 10000; /* Wait 10 seconds */

result = RFM2gWaitForEvent(Handle, &info);

Related Commands

¢ RFM2gEnableEvent()

¢ RFM2gDisableEvent()

¢ RFM2gClearEvent()

¢ RFM2gSendEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gEnableEventCallback()
¢ RFM2gDisableEventCallback()

Application Program Interface (API) Library 63

1.8.5 RFM2gEnableEventCallbacki)

The RFM2gEnableEventCallback() function enables the interrupt notification for
one event on one board.

The specified event is disabled if one of the following error events occurs, and the
RFM2gEnableEvent() must be called to re-enable the interrupt:

Error Event ID Description
REM2GEVENT_BAD_DATA Bad Data Interrupt
RFM2GEVENT_SYNC_LOSS Sync Loss Occurred Interrupt

g NOTE

Ensure that events do not interrupt continuously if they are re-enabled.

The behavior of REM2gEnableEventCallback() varies, depending on the following
scenarios regarding REM2gEnableEvent() and REM2gWaitForEvent():

Table 1-10 RFM2gEnableEventCallback()

Existing Condition(s) RFM2gDisableEvent() Behavior
The event is enabled and a callback is registered. RFM2G_EVENT_IN_USE

The event is enabled without an enabled callback. RFM2G_SUCCESS

The event is enabled with a pending RFM2gWaitForEvent(). RFM2G_EVENT_IN_USE
Syntax

STDRFM2GCALL RFM2gEnableEventCallback
(RFM2GHANDLE rh,
RFM2GEVENTTYPE EventType,
RFM2G_EVENT_FUNCPTR pEventFunc);

void rfmSampleFunc(RFM2GHANDLE rh,
RFM2GEVENTINFO Eventinfo)

Parameters
rh Handle to opened RFM2g device (I).
EventType Specifies which interrupt event to disable (I).
Interrupts correlate to the following event IDs:
Interrupt Event ID
Reset Interrupt REM2GEVENT_RESET
Network Interrupt 1 RFEM2GEVENT_INTR1
Network Interrupt 2 RFM2GEVENT_INTR2
Network Interrupt 3 RFM2GEVENT_INTR3
Network Interrupt 4
(Init Interrupt) RFM2GEVENT_INTR4
Bad Data Interrupt REM2GEVENT_BAD_DATA
RX FIFO Full Interrupt RFM2GEVENT_RXFIFO_FULL
Rogue Packet Detected and
Removed Interrupt RFM2GEVENT_ROGUE_PKT
RX FIFO Almost Full RFM2GEVENT_RXFIFO
Interrupt _AFULL
Sync Loss Occurred Interrupt RFM2GEVENT_SYNC_LOSS
Memory Write Inhibited RFM2GEVENT_MEM
_WRITE_INHIBITED
Memory Parity Error RFM2GEVENT_LOCAL
_MEM_PARITY_ERR
pEventFunc The address of the function to be called when the event occurs (I).

64 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER 2 — Invalid EventType.

RFM2G_BAD_PARAMETER_3 — pEventFunc is NULL.

RFM2G_EVENT_IN_USE — Event is already being waited on.

RFM2G_DRIVER_ERROR — Internal driver error.

RFM2G_WAIT_EVENT_CANCELED — Wait for event canceled.
Example

The following example code registers the function MyEventCallback, which is
called when the hardware returns the REM2GEVENT_INTR1 interrupt. Use the
following code by inserting it into the example routine in section 1.2.2 Routine
Code for Use with API Function Examples, page 12:

result = RFM2gEnableEventCallback(Handle,
RFM2GEVENT_INTR1, MyEventCallback);

Related Commands

¢ RFM2gEnableEvent()

¢ RFM2gDisableEvent()

¢ RFM2gClearEvent()

¢ RFM2gSendEvent()

e RFM2gWaitForEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gDisableEventCallback()

Application Program Interface (API) Library 65

1.8.6 RFM2gDisableEventCallback()

The RFM2gDisableEventCallback() function disables interrupt notification for
one event by this handle.

The specified event is disabled if one of the following error events occurs, and the
RFM2gEnableEvent() must be called to re-enable the interrupt:

Error Event ID Description

RFM2GEVENT_BAD_DATA Bad Data Interrupt

RFM2GEVENT_SYNC_LOSS Sync Loss Occurred
Interrupt

E NOTE

Ensure that events do not interrupt continuously if they are re-enabled.

The behavior of REM2gDisableEventCallback() varies, depending on the
following scenarios regarding REM2gEnableEvent() and
RFM2gEnableEventCallback():

Table 1-11 RFM2gDisableEventCallbacki)
Existing Condition(s) RFM2gDisableEvent() Behavior

The event is enabled and a callback is registered. RFM2G_SUCCESS — The callback is terminated without
calling the user function.

The event is enabled without a registered callback. RFM2G_SUCCESS

Syntax

STDRFM2GCALL RFM2gDisableEventCal lback(RFM2GHANDLE rh,
RFM2GEVENTTYPE EventType);

Parameters
rh Handle to opened RFM2g device (I).
EventType Specifies which interrupt event to disable (I).
Interrupts correlate to the following event IDs:
Interrupt Event ID
Reset Interrupt RFM2GEVENT_RESET
Network Interrupt 1 RFM2GEVENT_INTR1
Network Interrupt 2 RFM2GEVENT_INTR2
Network Interrupt 3 RFM2GEVENT_INTR3
Network Interrupt 4
(Init Interrupt) RFM2GEVENT_INTR4
Bad Data Interrupt RFM2GEVENT_BAD_DATA
RX FIFO Full Interrupt RFM2GEVENT
_RXFIFO_FULL
Rogue Packet Detected RFM2GEVENT_ROGUE_PKT
and Removed Interrupt
RX FIFO Almost Full RFM2GEVENT_RXFIFO_AFULL
Interrupt
Sync Loss Occurred RFM2GEVENT_SYNC_LOSS
Interrupt
Memory Write Inhibited RFM2GEVENT_MEM
_WRITE_INHIBITED
Memory Parity Error RFM2GEVENT_LOCAL

_MEM_PARITY_ERR

66 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — Invalid EventType.

RFM2G_EVENT_NOT_IN_USE — Event not registered for
callback.

RFM2G_EVENT_NOT_IN_USE — No callback was set up for the
specified event.

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2gDisableEventCallback(Handle,
RFM2GEVENT_INTR1) ;

Related Commands

¢ RFM2gEnableEvent()

¢ RFM2gDisableEvent()

e RFM2gClearEvent()

¢ RFM2gSendEvent()

e RFM2gWaitForEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gEnableEventCallback()

Application Program Interface (API) Library 67

1.8.7 RFM2gClearEventl()

The RFM2gClearEvent() function clears any or all pending interrupt events for a

specified event.

Syntax

STDRFM2GCALL RFM2gClearEvent(RFM2GHANDLE rh,
RFM2GEVENTTYPE EventType);

Parameters
rh

EventType

Return Values
Success

Failure

Handle to opened RFM2g device (I).

The event FIFO to clear (I).

Interrupts correlate to the following event IDs:

Interrupt

Reset Interrupt

Network Interruptl

Network Interrupt2

Network Interrupt3

Network Interrupt4
(Init Interrupt)

Bad Data Interrupt

RX FIFO Full
Interrupt

Rogue Packet
Detected and Removed
Interrupt

RX FIFO Almost Full
Interrupt

Sync Loss Occurred
Interrupt

Memory Write Inhibited

Memory Parity Error

All interrupts

RFM2G_SUCCESS

Event ID

REM2GEVENT_RESET
RFEM2GEVENT_INTR1
RFM2GEVENT _INTR2
RFM2GEVENT _INTR3
RFM2GEVENT _INTR4

RFM2GEVENT_BAD_DATA
RFM2GEVENT_RXFIFO_FULL

RFM2GEVENT_ROGUE_PKT

RFM2GEVENT_RXFIFO_AFULL
RFM2GEVENT_SYNC_LOSS

RFM2GEVENT_MEM
_WRITE_INHIBITED

RFM2GEVENT_LOCAL
_MEM_PARITY_ERR

RFM2GEVENT_LAST

RFM2G_NULL_DESCRIPTOR — rh is NULL.

RFM2G_0S_ERROR — OS returned an error.

RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented

in the driver.

RFM2G_BAD_PARAMETER_2 — Invalid EventType.

RFM2G_DRIVER_ERROR — Internal driver error.

68 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2gClearEvent(Handle, RFM2GEVENT_INTR1);

Related Commands

¢ RFM2gEnableEvent()

¢ RFM2gDisableEvent()

¢ RFM2gSendEvent()

e RFM2gWaitForEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gEnableEventCallback()
¢ RFM2gDisableEventCallback()

Application Program Interface (API) Library 69

1.8.8 RFM2gCancelWaitForEvent)

The RFM2gCancelWaitForEvent() function cancels any pending
RFM2gWaitForEvent() calls on an event by this handle. If a callback has been
registered to the specified event, the callback will be canceled.

A
B noe
A canceled RFM2gWaitForEvent() call returns a value of RFM2G_WAIT_EVENT_CANCELED.

Syntax

STDRFM2GCALL RFM2gCancelWaitForEvent(RFM2GHANDLE rh,
RFM2GEVENTTYPE EventType);

Parameters
rh Handle to opened RFM2g device (I).
EventType Specifies which interrupt event to cancel (I).

Interrupts correlate to the following event IDs:

Interrupt Event ID
Reset Interrupt RFM2GEVENT_RESET
Network Interruptl RFM2GEVENT_INTR1
Network Interrupt2 RFM2GEVENT_INTR2
Network Interrupt3 RFM2GEVENT_INTR3
Network Interrupt4 RFM2GEVENT_INTR4
(Init Interrupt)
Bad Data Interrupt REM2GEVENT_BAD_DATA
RX FIFO Full RFM2GEVENT_RXFIFO_FULL
Interrupt
Rogue Packet RFM2GEVENT_ROGUE_PKT
Detected and Removed
Interrupt
RXFIFO Almost Full RFM2GEVENT_RXFIFO_AFULL
Interrupt
Sync Loss Occurred RFM2GEVENT_SYNC_LOSS
Interrupt
Memory Write Inhibited RFM2GEVENT_MEM
_WRITE_INHIBITED
Memory Parity Error RFEM2GEVENT_LOCAL

_MEM_PARITY_ERR

70 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_EVENT_NOT_IN_USE — No wait is pending for the event.
RFM2G_BAD_PARAMETER_2 — Invalid EventType.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2gCancelWaitForEvent(Handle,
RFM2GEVENT_INTR1) ;

Related Commands

¢ RFM2gEnableEvent()

¢ RFM2gDisableEvent()

e RFM2gClearEvent()

¢ RFM2gSendEvent()

¢ RFM2gWaitForEvent()

¢ RFM2gEnableEventCallback()
¢ RFM2gDisableEventCallback()

Application Program Interface (API) Library 71

1.8.9 RFM2gClearEventCount()

The RFM2gClearEventCount() function clears event counts for a specified event

or all events.

Syntax

STDRFM2GCALL RFM2gClearEvent(RFM2GHANDLE rh,
RFM2GEVENTTYPE EventType);

Parameters
rh

EventType

Return Values
Success

Failure

Handle to opened RFM2g device (I).

The event count to clear (I).

Interrupts correlate to the following event IDs:

Interrupt

Reset Interrupt

Network Interruptl

Network Interrupt2

Network Interrupt3

Network Interrupt4
(Init Interrupt)

Bad Data Interrupt

RX FIFO Full
Interrupt

Rogue Packet
Detected and Removed
Interrupt

RX FIFO Almost Full
Interrupt

Sync Loss Occurred
Interrupt

Memory Write Inhibited

Memory Parity Error

All interrupts

RFM2G_SUCCESS

Event ID

RFM2GEVENT_RESET
RFM2GEVENT _INTR1
RFM2GEVENT _INTR2
RFM2GEVENT _INTR3
RFM2GEVENT _INTR4

RFM2GEVENT_BAD_DATA
RFM2GEVENT_RXFIFO_FULL

RFM2GEVENT_ROGUE_PKT

RFM2GEVENT_RXFIFO_AFULL
RFM2GEVENT_SYNC_LOSS

RFM2GEVENT_MEM
_WRITE_INHIBITED

RFM2GEVENT_LOCAL
_MEM_PARITY_ERR

RFM2GEVENT_LAST

RFM2G_NULL_DESCRIPTOR — rhis NULL.

RFM2G_0S_ERROR — OS returned an error.

RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented

in the driver.

RFM2G_BAD_PARAMETER_2 — Invalid EventType.

RFM2G_DRIVER_ERROR — Internal driver error.

72 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2gClearEvent(Handle, RFM2GEVENT_INTR1);

Related Commands

¢ RFM2gEnableEvent()
RFM2gDisableEvent()

¢ RFM2gSendEvent()

e RFM2gWaitForEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gEnableEventCallback()
¢ RFM2gDisableEventCallback()

Application Program Interface (API) Library 73

1.8.10 RFM2gGetEventCounti)

The RFM2gGetEventCount() function returns the event count for a specified
event.

Syntax

STDRFM2GCALL RFM2gGetEventCount(RFM2GHANDLE rh,
RFM2GEVENTTYPE EventType),
RFM2G_UINT32 *Count);

Example:

RFM2G_UINT32 Count;
result = RFM2gClearEvent(Handle, RFM2GEVENT_INTR1,

&Count);
Parameters:
rh Handle to opened RFM2g device (I).
EventType The event FIFO to clear (I).
Interrupts correlate to the following event IDs:
Interrupt Event ID
Reset Interrupt RFM2GEVENT_RESET
Network Interruptl RFM2GEVENT_INTR1
Network Interrupt2 RFM2GEVENT_INTR2
Network Interrupt3 RFM2GEVENT_INTR3
Network Interrupt4 RFM2GEVENT_INTR4
(Init Interrupt)
Bad Data Interrupt REM2GEVENT_BAD_DATA
RX FIFO Full RFM2GEVENT_RXFIFO_FULL
Interrupt
Rogue Packet REM2GEVENT_ROGUE_PKT
Detected and Removed
Interrupt
RX FIFO Almost Full RFM2GEVENT_RXFIFO_AFULL
Interrupt
Sync Loss Occurred RFM2GEVENT_SYNC_LOSS
Interrupt
Memory Write Inhibited RFM2GEVENT_MEM
_WRITE_INHIBITED
Memory Parity Error RFM2GEVENT_LOCAL

_MEM_PARITY_ERR

Count Pointer to where the event count of the specified event is
written (O).

74 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER 2 — Invalid EventType.
RFM2G_DRIVER_ERROR — Internal driver error.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2gClearEvent(Handle, RFM2GEVENT_INTR1);

Related Commands

¢ RFM2gEnableEvent()

¢ RFM2gDisableEvent()

¢ RFM2gSendEvent()

e RFM2gWaitForEvent()

¢ RFM2gCancelWaitForEvent()
¢ RFM2gEnableEventCallback()
¢ RFM2gDisableEventCallback()

Application Program Interface (API) Library 75

1.9 RFM2g Utility API Functions

The following API functions in the rfm2g_api.h file are utility functions that are
provided by the RFM2g driver.

Table 1-12 RFM2g Utility API Functions

API Function Description

RFM2gErrorMsg() Returns a pointer to a text string describing an error code.

RFM2gGetLed() Retrieves the current ON/OFF state of the Reflective Memory board's STATUS LED.

RFM2gSetLed() Sets the ON/OFF state of the Reflective Memory board's STATUS LED.

RFM2gCheckRingCont() Returns the fiber ring continuity through nodes.

RFM2gGetDebugFlagsl() Retrieves a copy of all RFM2g device driver debug control flags.

RFM2gSetDebugFlagsl) Sets or clears the device driver debug control flags.

RFM2gGetDarkOnDark() Retrieves the current ON/OFF state of the Reflective Memory board's Dark on Dark
feature.

RFM2gSetDarkOnDarki() Sets the ON/OFF state of the Reflective Memory board's Dark on Dark feature.

RFM2gClearOwnDatal) Returns the state of the Own Data bit and resets the state if set. Calling this
function will turn OFF the Own Data LED if ON.

RFM2gGetTransmit() Retrieves the current ON/OFF state of the Reflective Memory board'’s transmitter.

RFM2gSetTransmit() Sets the ON/OFF state of the Reflective Memory board's transmitter.

RFM2gGetLoopback() Retrieves the current ON/OFF state of the Reflective Memory board’s loopback of
the transmit signal to the receiver circuit internally.

RFM2gSetLoopback() Sets the ON/OFF state of the Reflective Memory board's loopback of the transmit
signal to the receiver circuit internally.

RFM2gGetParityEnablel) Retrieves the current ON/OFF state of the Reflective Memory board’s parity
checking on all onboard memory accesses.

RFM2gSetParityEnable() Sets the ON/OFF state of the Reflective Memory board's parity checking on all
onboard memory accesses.

RFM2gGetMemoryOffset() Gets the memory offset of the Reflective Memory board.

RFM2gSetMemoryOffset()

RFM2gGetSlidingWindow()

RFM2gSetSlidingWindow()

Sets the memory offset of the Reflective Memory board.

Retrieves the base Reflective Memory offset and size of the current sliding
window.

Sets the base Reflective Memory offset of the sliding window.

76 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.1 RFM2gErrorMsgl)

The RFM2gErrorMsg() function returns a pointer to a text string describing a
runtime error.

Runtime errors are detected by the API. A text description of the error is output to
the screen if debug mode is enabled and returns the string through the return
pointer.

Syntax
char* RFM2gErrorMsg(RFM2G_STATUS ErrorCode);

Parameters
ErrorCode Return code from an API function (I).
Return Values

char* The address pointing to a character string that describes the
error parameter. The following string is returned if an invalid
ErrorCode is passed:
“UNKNOWN RFM2G ERROR [%d]”
where [%d] is the ErrorCode value.

Failure A NULL pointer.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2G_SUCCESS;
printfF(“RFM2g Error Message : %s\n”,
RFM2gErrorMsg(result));

Application Program Interface (API) Library 77

1.9.2 RFM2gGetLed|)

The RFM2gGetLed() function retrieves the current ON/OFF state of the Reflective
Memory board's STATUS LED.

Syntax

STDRFM2GCALL RFM2gGetLed(RFM2GHANDLE rh,

Parameters
rh

Led

Return Values
Success

Failure

Example

RFM2G_BOOL *Led);

Handle to opened RFM2g device (I).

Pointer to where the state of the STATUS LED is written
(RFM2G_ON when the LED is ON, or REM2G_OFF when the
LED is OFF) (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rh is NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — Led is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL Led;

result = RFM2gGetLed(Handle, &lLed);

Related Commands

e RFM2gSetLed()

78 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.3 RFM2gSetLed()

The RFM2gSetLed() function sets the current ON/OFF state of the Reflective
Memory board's STATUS LED.

Syntax

STDRFM2GCALL RFM2gSetLed(RFM2GHANDLE rh,
RFM2G_BOOL Led);

Parameters
rh Handle to opened RFM2g device (I).
Led The state of the Fail LED: RFM2G_FALSE=>OFF,

RFM2G_TRUE=>ON (I).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2gSetLed(Handle, RFM2G_TRUE);
Related Commands

¢ RFM2gGetLed()

Application Program Interface (API) Library 79

1.9.4 RFM2gCheckRingCont)

The RFM2gCheckRingCont() function is a diagnostic aid that shows whether or
not the fiber ring is continuous through all nodes in the ring. No data is written to
the Reflective Memory locations.

Syntax
STDRFM2GCALL RFM2gCheckRingCont(RFM2GHANDLE rh);

Parameters

rh Handle to currently opened RFM2g device (I).
Return Values

Success RFM2G_SUCCESS — Link is closed and intact.
Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.

RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_LINK_TEST_FAIL — Link is open.
RFM2G_DRIVER_ERROR — Internal driver error.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2gCheckRingCont(Handle);
if(result == RFM2G_SUCCESS)

{
}

printf(“Ring Intact”);

80 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.5 RFM2gGetDebugFlagsl)

g NOTE

Application programs should not use this function unless directed to do so by GE support

personnel.

The RFM2gGetDebugFlags() function returns a copy of the current setting of the
debug flags of the device driver. The REM2g device driver can generate debug
messages by checking a bit in the driver’s debug flags variable.

A maximum of 32 debug message classes are possible. Each debug message class
is assigned to an individual bit within this 32-bit control word. A nonzero bit
implies that the corresponding debug message class can be generated by the
RFM2g device driver.

Syntax

STDRFM2GCALL RFM2gGetDebugFlags(RFM2GHANDLE rh,

Parameters
rh

Flags

RFM2G_UNIT32 *Flags)

Handle to currently opened RFM2g device (I).

Pointer to where debug flags are written (O). The following are

possible debug flags:

Debug Flag
RFM2G_DBERROR
RFM2G_DBINIT
RFM2G_DBINTR
RFM2G_DBIOCTL
RFM2G_DBMMAP
RFM2G_DBOPEN
RFM2G_DBCLOSE
RFM2G_DBREAD
RFM2G_DBWRITE
RFM2G_DBPEEK
RFM2G_DBPOKE
RFM2G_DBSTRAT
RFM2G_DBTIMER
RFM2G_DBTRACE
RFM2G_DBMUTEX

RFM2G_DBINTR_NOT

RFM2G_DBSLOW

RFM2G_DBMINPHYS

Description

Report critical errors

Trace device probing and search
Trace interrupt service
Trace ioctl(2) system calls
Trace mmap(2) system calls
Trace open(2) system calls
Trace close(2) system calls
Trace read(2) system calls
Trace write(2) system calls
Trace peeks

Trace pokes

Trace read/write strategy
Trace interval timer

Trace subroutine entry/exit

Trace synchronization and

locking
Trace non-RFM interrupt service
Let syslogd get the message

Trace minphys limits

Application Program Interface (API) Library 81

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — Flags is NULL.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 IFlag;
result = RFM2gGetDebugFlags(Handle, &lIFlag);

Related Commands

¢ RFM2gSetDebugFlags()

82 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.6 RFM2g SetDebugFlagsl)

E NOTE

Application programs should not use this function unless directed to do so by GE support
personnel.

Each possible REM2g device driver debug output message is assigned to a debug
message class. The device driver will generate messages of that class if the
corresponding flag bit is set in the control word. The RFM2gSetDebugFlags()
function allows an application program to set that control word (i.e. this
command sets the driver’s debug flags).

Application programs do not normally need to alter the setting of the debug
message output control word. In some cases, enabling debug flags can severely
impact the performance of the host system.

Operation

The RFM2gSetDebugFlags() function specifies the new debug message control
word. The change is effective immediately.

Syntax

STDRFM2GCALL RFM2gSetDebugFlags(RFM2GHANDLE rh,
RFM2G_UNIT32 Flags);

Application Program Interface (API) Library 83

Parameters
rh

Flags

Return Values
Success

Failure

Handle to currently opened RFM2g device (I).

Debug flags (I). The following are possible debug flags to set:

Debug Flag
RFM2G_DBERROR
RFM2G_DBINIT
RFM2G_DBINTR
RFM2G_DBIOCTL
RFM2G_DBMMAP
RFM2G_DBOPEN
RFM2G_DBCLOSE
RFM2G_DBREAD
RFM2G_DBWRITE
RFM2G_DBPEEK
RFM2G_DBPOKE
RFM2G_DBSTRAT
RFM2G_DBTIMER
RFM2G_DBTRACE
RFM2G_DBMUTEX

RFM2G_DBINTR_NOT

RFM2G_DBSLOW

RFM2G_DBMINPHYS

RFM2G_DBDMA

RFM2G_SUCCESS

Description

Report critical errors

Trace device probing and search
Trace interrupt service
Trace ioctl(2) system calls
Trace mmap(2) system calls
Trace open(2) system calls
Trace close(2) system calls
Trace read(2) system calls
Trace write(2) system calls
Trace peeks

Trace pokes

Trace read/write strategy
Trace interval timer

Trace subroutine entry/exit

Trace synchronization and
locking

Trace non-RFM interrupt service
Let syslogd get the message
Trace minphys limits

Trace DMA calls

RFM2G_NULL_DESCRIPTOR — rhis NULL.

RFM2G_0OS_ERROR — OS returned an error.

RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented

in the driver.

84 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UNIT32 IFlag = RFM2G_DBERROR;
result = RFM2gSetDebugFlags(Handle, IFlag);

Related Commands

¢ RFM2gGetDebugFlags()

1.9.7 RFM2gGetDarkOnDarkl()

The REM2gGetDarkOnDark() function retrieves the current ON/OFF state of the
Reflective Memory board's Dark On Dark feature.

Syntax

STDRFM2GCALL RFM2gGetDarkOnDark(RFM2GHANDLE rh,
RFM2G_BOOL *state);

Parameters
rh Handle to opened RFM2g device (I).
state Pointer to where the state of the Dark on Dark feature is

written (RFM2G_ON when the Dark On Dark is ON, or
RFM2G_OFF when the Dark On Dark is OFF) (O).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0OS_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — State is NULL.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL DarkOnDark;
result = RFM2gGetDarkOnDark(Handle, &DarkOnDark);

Related Commands

¢ RFM2gSetDarkOnDark()

Application Program Interface (API) Library 85

1.9.8 RFM2gSetDarkOnDarki)

The RFM2gSetDarkOnDark() function sets the current ON/OFF state of the
Reflective Memory board's Dark On Dark feature.

Syntax

STDRFM2GCALL RFM2gSetDarkOnDark(RFM2GHANDLE rh,

Parameters
rh

state

Return Values
Success

Failure

Example

RFM2G_BOOL state);

Handle to opened RFM2g device (I).

The state of the Dark On Dark: REM2G_FALSE=>OFF,
RFM2G_TRUE=>ON (I).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result

= RFM2gSetDarkOnDark(Handle, RFM2G_TRUE);

Related Commands

¢ RFM2gGetDarkOnDark()

86 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.9 RFM2gClearOwnDatal)

The RFM2gClearOwnData() function retrieves the current ON/OFF state of the
Reflective Memory board's Own Data bit and resets the state if set. Calling this
function will turn OFF the Own Data LED if ON.

Syntax

STDRFM2GCALL RFM2gClearOwnData(RFM2GHANDLE rh,

Parameters
rh

state

Return Values
Success

Failure

Example

RFM2G_BOOL *state);

Handle to opened RFM2g device (I).

Pointer to where the state of the Own Data LED feature is
written (REM2G_ON when the Own Data LED is ON, or
RFM2G_OFF when the Own Data LED is OFF) (O).

RFM2G_SUCCESS

RFM2G_NOT_OPEN — Device is not open.
RFM2G_BAD_PARAMETER_1 — if the handle is NULL
RFM2G_BAD_PARAMETER_2 — if the state is NULL

RFM2G_0S_ERROR — if ioctl (2) fails

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL OwnData;

result

= RFM2gClearOwnData(Handle, OwnData);

Application Program Interface (API) Library 87

1.9.10 RFM2gGetTransmit()

The RFM2gGetTransmit() function retrieves the current ON/OFF state of the
Reflective Memory board's Transmitter.

Syntax

STDRFM2GCALL RFM2gGetTranmit(RFM2GHANDLE rh,

Parameters
rh

state

Return Values
Success

Failure

Example

RFM2G_BOOL *state);

Handle to opened RFM2g device (I).

Pointer to where the state of the Transmitter is written
(RFM2G_ON when the Transmitter is ON, or REM2G_OFF
when the Transmitter is OFF) (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — State is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL Transmit;

result = RFM2gGetTransmit(Handle, &Transmit);

Related Commands

¢ RFM2gSetTransmit()

88 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.11 RFM2gSetTransmit()

The RFM2gSetTransmit() function sets the current ON/OFF state of the Reflective
Memory board's Transmitter.

Syntax

STDRFM2GCALL RFM2gSetTransmit(RFM2GHANDLE rh,

Parameters
rh

state

Return Values
Success

Failure

Example

RFM2G_BOOL state);

Handle to opened RFM2g device (I).

The state of the Transmitter: REM2G_FALSE=>OFF,
RFM2G_TRUE=>ON (I).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result

= RFM2gSetTransmit(Handle, RFM2G_TRUE);

Related Commands

¢ RFM2gGetTransmit()

Application Program Interface (API) Library 89

1.9.12 RFM2gGetLoopbacki)

The RFM2gGetLoopback() function retrieves the current ON/OFF state of the
Reflective Memory board's loopback of the transmit signal to the receiver circuit

internally.

Syntax

STDRFM2GCALL RFM2gGetLoopback(RFM2GHANDLE rh,

Parameters
rh

state

Return Values
Success

Failure

Example

RFM2G_BOOL *state);

Handle to opened RFM2g device (I).

Pointer to where the state of the Loopback is written
(RFM2G_ON when the Loopback is ON, or RFM2G_OFF when
the Loopback is OFF) (O).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER_2 — State is NULL.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL Loopback;

result = RFM2gGetLoopback(Handle, &lLoopback);

Related Commands

¢ RFM2gSetLoopback()

90 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.13 RFM2gSetLoopbacki)

The RFM2gSetLoopback() function sets the current ON/OFF state of the Reflective
Memory board's loopback of the transmit signal to the receiver circuit internally.

Syntax

STDRFM2GCALL RFM2gSetLoopback(RFM2GHANDLE rh,

Parameters
rh

state

Return Values
Success

Failure

Example

RFM2G_BOOL state);

Handle to opened RFM2g device (I).

The state of the Loopback: RFM2G_FALSE=>OFF,
RFM2G_TRUE=>ON (I).

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0OS_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result

= RFM2gSetLoopback(Handle, RFM2G_TRUE);

Related Commands

¢ RFM2gSetLoopback()

Application Program Interface (API) Library 91

1.9.14 RFM2gGetParityEnablel)

The RFM2gGetParityEnable() function retrieves the current ON/OFF state of the
Reflective Memory board's parity checking on all onboard memory accesses.

Syntax

STDRFM2GCALL RFM2gGetParityEnable(RFM2GHANDLE rh,
RFM2G_BOOL *state);

Parameters
rh Handle to opened RFM2g device (I).
state Pointer to where the state of the Parity Enable is written

(RFM2G_ON when the ParityEnable is ON, or REM2G_OFF
when the Parity Enable is OFF) (O).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

RFM2G_BAD_PARAMETER 2 — State is NULL.
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_BOOL ParityEnable;
result = RFM2gGetParityEnable(Handle, &ParityEnable);

Related Commands

¢ RFM2gSetParityEnable()

92 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.15 RFM2gSetParityEnablel()

The RFM2gSetParityEnable() function sets the current ON/OFF state of the
Reflective Memory board's parity checking on all onboard memory accesses.

Syntax

STDRFM2GCALL RFM2gSetParityEnable(RFM2GHANDLE rh,

Parameters
rh

state

Return Values
Success

Failure

Example

RFM2G_BOOL state);

Handle to opened RFM2g device (I).

Pointer to where the state of the Set Parity Enable feature is
written (RFM2G_ON when the Set Parity Enable is ON, or
RFM2G_OFF when the Set Parity Enable is OFF) ().

RFM2G_SUCCESS
RFM2G_NULL_DESCRIPTOR — rhis NULL.
RFM2G_0S_ERROR — OS returned an error.
RFM2G_NOT_OPEN — Device is not open.

RFM2G_NOT_IMPLEMENTED — API function is not implemented
in the driver.

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result

= RFM2gSetParityEnable(Handle, RFM2G_TRUE);

Related Commands

¢ RFM2gGetParityEnable()

Application Program Interface (API) Library 93

1.9.16 RFM2gGetMemoryOffset()

The RFM2gGetMemoryOffset() function retrieves the Reflective Memory board's
memory window.

Syntax

STDRFM2GCALL RFM2gGetMemoryOffset(RFM2GHANDLE rh,
RFM2G_MEM_OFFSETTYPE *Offset);

Parameters
rh Handle to opened RFM2g device (I).
Offset Pointer to where the current offset to the network address is

written (O).

Return Values

Success RFM2G_SUCCESS

Failure RFM2G_NOT_OPEN — if the device has not yet been opened.
RFM2G_BAD_PARAMETER_1 — if the handle is NULL
RFM2G_BAD_PARAMETER_2 — if the offset is NULL
RFM2G_OS_ERROR — if IOCTL(2) fails

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_MEM_OFFSETTYPE MemoryOffset;
result = RFM2gGetMemoryOffset(Handle, &MemoryOffset);

Related Commands

¢ RFM2gSetMemoryOffset()

94 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.17 RFM2gSetMemoryOffset()
The RFM2gSetMemoryOffset() function sets the Reflective Memory board's

memory window.

Syntax

STDRFM2GCALL RFM2gSetMemoryOffset(RFM2GHANDLE rh,

Parameters
rh
Offset

Return Values
Success

Failure

Example

RFM2G_MEM_OFFSETTYPE offset);

Handle to opened RFM2g device (I)

The offset to the network address (I)

Valid Offsets Description
RFM2G_MEM_OFFSET0 1st 64 Megabyte Memory Offset
RFM2G_MEM_OFFSET1 2nd 64 Megabyte Memory Offset
RFM2G_MEM_OFFSET2 3rd 64 Megabyte Memory Offset
RFM2G_MEM_OFFSET3 4th 64 Megabyte Memory Offset

RFM2G_SUCCESS

RFM2G_NOT_OPEN — if the device has not yet been opened.
RFM2G_BAD_PARAMETER_1 — if the handle is NULL
RFM2G_BAD_PARAMETER_2 — if the offset is NULL

RFM2G_0S_ERROR — if IOCTL(2) fails

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

result = RFM2gSetLed(Handle, RFM2G_TRUE);

Related Commands

¢ RFM2gGetMemoryOffset()

Application Program Interface (API) Library 95

1.9.18 RFM2gGetSlidingWindowl()

The RFM2gGetSlidingWindow() function retrieves the base Reflective Memory
offset and size of the current sliding memory window.

Syntax

STDRFM2GCALL RFM2gGetSlidingWindow(RFM2GHANDLE rh,
RFM2G_UINT32 *offset,
RFM2G_UINT32 *size);

Parameters

rh Handle to opened RFM2g device (I)

offset Offset of the current sliding memory window (O)

size Size of the current sliding memory window in bytes. May be

set to NULL if the size is not requested. (O)
Return Values
Success RFM2G_SUCCESS
Failure RFM2G_NOT_OPEN - if the device has not yet been opened.

RFM2G_NOT_SUPPORTED - if the Sliding Memory Window
feature is not supported by the Reflective Memory board's
firmware.

RFM2G_BAD_PARAMETER_1 - if the handle is NULL
RFM2G_BAD_PARAMETER_2 - if the offset is NULL

RFM2G_OS_ERROR - if register accesses fail
Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 offset, size;

Result = RFM2gGetSlidingWindow(Handle, &offset,
&size);

Related Commands

¢ RFM2gSetSlidingWindow()

96 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

1.9.19 RFM2gSetSlidingWindowl)

The RFM2gSetSlidingWindow() function sets the base Reflective Memory offset
of the sliding memory window. The size of the sliding window is set with
switches or jumpers on the Reflective Memory board. The available window sizes
are 2 MByte, 16 MByte, 64 MByte, and the total memory size. The offset of the
sliding window must be a multiple of the size of the sliding window.

Syntax

STDRFM2GCALL RFM2gSetSlidingWindow(RFM2GHANDLE rh,
RFM2G_UINT32 offset);

Parameters
rh Handle to opened RFM2g device (I)
offset Offset of the sliding memory window (I)

Return Values
Success RFM2G_SUCCESS
Failure RFM2G_NOT_OPEN - if the device has not yet been opened.

RFM2G_NOT_SUPPORTED - if the Sliding Memory Window
feature is not supported by the Reflective Memory board's
firmware.

RFM2G_BAD_PARAMETER_1 - if the handle is NULL

RFM2G_BAD_PARAMETER_2 - if the offset is not a multiple of the
window size.

RFM2G_OUT_OF_RANGE - if the offset and window size exceed
the Reflective Memory board's memory size.

RFM2G_OS_ERROR - if register accesses fail

RFM2G_DRIVER_ERROR - if the driver returns an invalid window
size.

Example

Use the following code by inserting it into the example routine in section
1.2.2 Routine Code for Use with API Function Examples, page 12:

RFM2G_UINT32 offset = 0x00400000; /* A valid offset
for a 2MB window */

Result = RFM2gSetSlidingWindow(Handle, offset);

Related Commands

¢ RFM2gGetSlidingWindow()

Application Program Interface (API) Library 97

2 » rfm2g_util.c Utility Program

2.1 Introduction

The RFM2g driver is delivered with a command line interpreter (rfm2g_util.c)
that enables you to exercise various REM2g commands by entering commands at
the standard input (usually the console keyboard). The utility provides a
convenient method of accessing most of the services provided by the driver.

2.2 RFM2g Command Line Interpreter

The rfm2g_util.c command line interpreter program is a utility that enables you
to view or change the contents of a RFM2g board and provides an easy method of
operating the device driver.

No programming is required to use the command line interpreter program.
Instead, simple ASCII text commands are used. A single command may be given
on a command line when the command line interpreter program is running, or
multiple commands may be read from the standard input file.

Reflective Memory can be displayed or changed. RFM2g interrupt events may be
sent or received. The program also allows asynchronous notification of RFM
interrupt events.

The command line interpreter program is coded in the ANSI dialect of the C
language. The source code for the program is provided to serve as an example of
how to use the language bindings provided by the driver and the DLL or library.

2.2.1 Using the Command Line Interpreter

The command line interpreter program is not case-sensitive, so uppercase and
lowercase characters may be intermixed at will and will not affect execution. In
addition, the command line interpreter program attempts to reduce the amount of
typing that may be necessary. Whenever a keyword is required (such as a
command name), only the first few characters need to be typed to uniquely
identify the command. If you do not type enough characters for the command line
interpreter to select a single command, all of the possible commands will be
listed, along with another command prompt.

For example, five commands in the command line interpreter program begin with
the character d (the devname, disableevent, disablecallback, dllversion and
driverversion commands). However, the first two letters of the devname
command will specify it as a unique command to the command line interpreter.
So, instead of having to type:

devname

only the first two letters needs to be typed:
de

98 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

If the typed characters are not enough to uniquely identify the command, the
command line interpreter outputs an error message and shows a table of the
possible names. Since there are five commands that begin with the letter d, the
typed input:

d
produces this message:

d

Ambiguous command "d". This could be
devname

disableevent

disablecal lback

dllversion

driverversion

Notes On Entering Numbers

Whenever the command line interpreter expects a number, any C-language style
number may be used. If it begins with 0x, a hexadecimal value follows; if it begins
with a 0, an octal value follows; otherwise, the number is assumed to be decimal.

Notes On Device Numbers

When the rfm2g_util.c utility is started, you will be prompted for a device
number. Refer to your driver-specific manual for the correct REM2g device
number to use.

Once a device number has been entered, it displays next to the utility prompt. In
the following example, board number 0 has been entered:

UTILO >

rfm2g_util.c Utility Program 99

2.2.2 Command Line Interpreter Example

The following is an example workflow illustrating how the command line
interpreter program can be used. Examples are also provided with the
descriptions of individual commands within the command line interpreter.

1. Start the utility program by following the directions in your driver-specific
manual. The following is displayed in the console window:

PCl RFM2g Commandline Diagnostic Utility
Please enter device number:

2. Type an RFM2g device number and press <ENTER>.
Z
E NOTE
Refer to your driver-specific manual for the correct RFM2g device number to use.

A prompt displays that includes the device number. For example, if you
entered O:

UTILO >

3. View the contents of RFM2g memory at offset 0x0 by entering:
peek8 0x0

4. Observe the output.
5. Exit the command line interpreter program by entering:

quit
The following prompt displays:
Exit? (y/n):

6. Enter y to confirm.

100 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3 Utility Commands

The commands which are implemented in the command line interpreter program
are described and demonstrated in this section.

The table below lists each command included in the command line interpreter
and a short description of each.

Table 2-1 RFM2g Driver Commands

Command Description

boardid Returns the board ID of the currently opened RFM2g device.
cancelwait Cancels any pending calls for a specified event type.
checkring Returns the fiber ring continuity through all nodes in a ring.
clearevent Clear any pending events for a specified event.

cleareventcount
clearowndata
config

devname

Clear one or all interrupt event counts.
The Reflective Memory board’s Own Data LED was OFF.
Display RFM2g board configuration information.

Returns the device name associated with a RFM2g handle.

disableevent
disablecallback
dllversion

driverversion

Disables the reception of a specified RFM2g interrupt event.
Disables the interrupt notification for a specified event notification.
Returns the DLL or library version.

Returns the RFM2g device driver version.

drvspecific
dump
enableevent

enablecallback

Enter a driver-specific menu.
Peek and display an area of Reflective Memory.
Enable the receiving of a specified RFM2g event.

Enables the interrupt notification for a specified event.

errormsg Prints a text string describing an error code.

exit Terminate the command line interpreter program.

first Returns the first available RFM2g offset.

getdarkondark Returns the state of the RFM2g Dark on Dark feature.

getdebug Retrieves a copy of all RFM2g device driver debug message class control
flags.

getdmabyteswap Returns the state of DMA byte swapping hardware.

geteventcount Retrieves the count of received interrupt events.

getled Retrieves the current ON/OFF state of the Reflective Memory board's STATUS
LED.

getmemoryoffset Gets the memory offset of the Reflective Memory board.

getloopback Retrieves the current ON/OFF state of the Reflective Memory board'’s
loopback of the transmit signal to the receiver circuit internally.

getparityenable Retrieves the current ON/OFF state of the Reflective Memory board's parity
checking on all onboard memory accesses.

getpiobyteswap Returns the state of PIO byte swapping hardware.

getslidingwindow
getthreshold

gettransmit

help

Get the offset and size of the current Sliding Window.
Returns the current DMA threshold value.

Retrieves the current ON/OFF state of the Reflective Memory board's
transmitter.

Display command help.

mapuser

Retrieves RFM2g memory information or maps RFM2g memory to the user
space.

rfm2g_util.c Utility Program 101

Table 2-1 RFM2g Driver Commands (Continued)

Command Description

mapuserbytes Retrieves RFM2g memory byte information or maps RFM2g memory bytes to
the user space.

memop Fill or verify an area of Reflective Memory.

nodeid Returns the RFM2g device node ID.

peek8, peek16, peek32 and peek64

performancetest

poke8, pokel6, poke32 and poke64

Peek an element from RFM2g memory.
Display the speed of system reads and writes.

Poke an element to RFM2g memory.

quit Terminate the command line interpreter program.

read Reads memory contents starting at the specified offset in Reflective Memory
and dumps data read to output.

repeat Repeat a command line interpreter command.

return Exit a driver-specific sub-menu.

send Sends an RFM2g interrupt event to another node.

setdarkondark Sets the ON/OFF state of the Reflective Memory board’s Dark on Dark
feature.

setdebug Sets the driver’s debug display word (i.e. debug flags).

setdmabyteswap Sets the ON/OFF state of DMA byte swapping hardware.

setled Sets the current ON/OFF state of the Reflective Memory board's STATUS LED.

setloopback Sets the ON/OFF state of the Reflective Memory board's loopback of the
transmit signal to the receiver circuit internally.

setmemoryoffset Sets the memory offset of the Reflective Memory board.

setparityenable Sets the ON/OFF state of the Reflective Memory board's parity checking on

setpiobyteswap

all onboard memory accesses.

Sets the ON/OFF state of PIO byte swapping hardware.

setslidingwindow
setthreshold

settransmit

Set the offset of the Sliding Window.
Sets the transfer size at which reads and writes will use DMA.

Sets the ON/OFF state of the Reflective Memory board's transmitter.

size Returns the total amount of virtual memory space available on the RFM2g
device.

unmapuser Unmaps RFM2g buffer memory from the user space.

unmapuserbytes Unmaps RFM2g buffer memory from the user space.

wait Blocks the calling process until an occurrence of an RFM2g interrupt event is
received or a timeout expires.

write Writes a value starting at the specified offset in Reflective Memory.

102 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.1 boardid

The boardid command returns the RFM2g interface model type. Each REM2g
interface model type is uniquely identified by a numeric value assigned by

GE and recorded as a fixed constant in an RFM2g hardware register. The driver
and support library read this value when the device is opened. The utility calls
RFM2gBoardID() to obtain the REM2g board ID.

Syntax
boardid
Example

UTILO > boardid
Board 1D 0x65 (VMIPCI-5565)
UTILO >

2.3.2 cancelwait

The cancelwait command cancels any pending calls on an event. If a callback has
been registered to the specified event, the callback will be canceled. The utility
calls RFM2gCancelWaitForEvent() to cancel the pending calls.

Syntax

cancelwait event

Parameters

event Specifies which interrupt event to cancel ().
Interrupts correlate to the following event IDs:

Interrupt Event ID
Reset Interrupt

Network Interrupt 1

Network Interrupt 2

Network Interrupt 3

Network Interrupt 4 (Init Interrupt)
Bad Data Interrupt

RX FIFO Full Interrupt

Rogue Packet Detected and Removed
RX RIFO Almost Full

SYNC Loss

Mem Write Inhibited 10
Local Mem Parity Error 11
All Events 12

OO IOV WD~ O

Example

UTILO > cancelwait 1

RFM2gWaitForEvent has been canceled for the
“"NETWORK INT 1" event.

UTILO >

rfm2g_util.c Utility Program 103

2.3.3 checkring

The checkring command is a diagnostic aid that shows whether or not the fiber
ring is continuous through all nodes in the ring. No data is written to the
Reflective Memory locations. The utility calls RFM2gCheckRingCont() to obtain

the RFM2g ring status.
Syntax

checkring
Example

UTILO > checkring
The Reflective Memory link is intact
UTILO >

2.3.4 clearevent

The clearevent command clears all pending interrupt events for a specified event.
The utility calls REM2gClearEvent() function.

Syntax
clearevent event
Parameters
event The event FIFO to clear (I), which is one of the following;:
Number Event to Clear
0 RESET
1 NETWORK INT 1
2 NETWORK INT 2
3 NETWORK INT 3
4 NETWORK INT 4
5 BAD DATA
6 FIFO FULL
7 ROGUE PACKET
8 RX FIFO ALMOST FULL
9 SYNC LOSS
10 MEM WRITE INHIBITED
11 LOCAL MEM PARITY ERROR
12 ALL EVENTS
Example

UTILO > clearevent 0O
The "RESET™ interrupt event was flushed.
UTILO >

104 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.5 cleareventcount

The cleareventcount command clears event counts for a specified event or all
events. The utility calls RFM2gClearEventCount() function.

Syntax

cleareventcount event

Parameters
event Where “event” is one of the following interrupts events [0-12]:

Number Event to Clear

RESET

NETWORK INT 1
NETWORK INT 2
NETWORK INT 3
NETWORK INT 4

BAD DATA

RX FIFO FULL

ROGUE PACKET

RX FIFO ALMOST FULL
SYNC LOSS

10 MEM WRITE INHIBITED
11 LOCAL MEM PARITY ERROR
12 ALL EVENTS

O O U = WD~ O

Example

Please enter device Number: O

UTILO > cleareventcount O

The "RESET" interrupt event count cleared.
UTILO >

2.3.6 clearowndata

The clearowndata command turns the Reflective Memory board’s Own Data LED
OFF. The utility calls RFM2gClearOwnData() function.

Syntax

clearowndata

Example

UTILO > cleareventcount

The Reflective Memory board’s Own Data LED was turned
off.

uUTILO >

rfm2g_util.c Utility Program 105

2.3.7 config

The config command will display the values of members in the RFM2GCONFIG
structure. The utility calls RFM2gGetConfig() to obtain the REM2GCONFIG

structure.
Syntax

config

Example

UTILO > config
Driver Part Number
Driver Version
Device Name
Board Instance
Board 1D
Node 1D
Installed Memory
Board Revision
PLX Revision

UTILO >

2.3.8 devhame

"VMISFT-RFM2G-ABC-037""
"RELEASE 2.00"
"RFM2G_0"

0

0x65

0x01

134217728d (0x08000000)
0x04

OxAD

The devname command displays a string containing the first 64 characters of the
device name associated with a RFM2g file handle. The utility calls
RFM2gDeviceName() to obtain the RFM2g device name.

Syntax

devname

Example

UTILO > devname
Device Name:
UTILO >

"rfm2g_0"

106 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.9 disableevent

The disableevent command disables the reception of an REM2g event. The utility
calls RFM2gDisableEvent() to disable the event.

Syntax

disableevent event

Parameters

event

Example

Specifies which interrupt event to disable (I). Interrupts

correlate to the following event IDs:

Interrupt

Reset Interrupt

Network Interrupt 1

Network Interrupt 2

Network Interrupt 3

Network Interrupt 4 (Init Interrupt)
Bad Data Interrupt

RX FIFO Full Interrupt

Rogue Packet Detected and Removed
RX RIFO Almost Full

SYNC Loss

Mem Write Inhibited

Local Mem Parity Error

UTILO > disableevent 0O
Interrupt event "RESET" is disabled.
UTILO >

Event ID

—_ = O WUk W= O

—_ O

rfm2g_util.c Utility Program 107

2.3.10 disablecallback

The disablecallback command disables event notification for a specified event.
The utility calls RFM2gDisableEventCal Iback() to disable event notification.

Syntax

disablecallback event

Parameters

event Specifies which event notification to disable (I). Events
correlate to the following event IDs:

Interrupt Event ID
Reset Interrupt

Network Interrupt 1

Network Interrupt 2

Network Interrupt 3

Network Interrupt 4 (Init Interrupt)
Bad Data Interrupt

RX FIFO Full Interrupt

Rogue Packet Detected and Removed
RX RIFO Almost Full

SYNC Loss

Mem Write Inhibited

Local Mem Parity Error

—_ = O WUk W= O

—_ O

Example

UTILO > disableevent 1
Interrupt event "NETWORK INT 1" is disabled.
UTILO >

2.3.11 dllversion

The dllversion command displays an ASCII string showing the version of the
DLL or API library. This string contains the production release level of the library
and is unique between different versions of the API library. The utility calls
RFM2gDIIVersion() to return the library version.

Syntax
dllversion
Example
UTILO > dlilversion
DIl Version: ""RO1.00"
UTILO >

108 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.12 driverversion

The driverversion command displays an ASCII string showing the GE
production release version of the underlying REM2g device driver. The utility
calls RFM2gDriverVersion() to return the driver version.

Syntax
driverversion
Example
UTILO > driverversion
Driver Version: ""RO1.00"
UTILO >

2.3.13 drvspecific

The drvspecific command enables the use of the driver-specific sub-menu
commands provided in addition to the common commands discussed in this
chapter. Refer to your driver-specific manual for information on commands
specific to your RFM2g driver.

Syntax

drvspecific

Examples
To access driver-specific commands:

UTILO > drvspecific
Welcome to the driver specific menu
UTILDRVSPECO >

To display a list of driver-specific commands:

UTILDRVSPECO > help

COMMAND PARAMETERS

help [command]

repeat [-p] count cmd [arg...]
return

UTILDRVSPECO >
To exit the driver-specific commands:

UTILDRVSPECO > return
Welcome to the main menu
UTILO >

rfm2g_util.c Utility Program 109

2.3.14 dump

The dump command enables the user to peek and display an area of Reflective
Memory. This utility calls RFM2gPeek8(), RFM2gPeekl16(), RFM2gPeek32() or
RFM2gPeek64 ().

E NOTE

See section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte
data.

Syntax

dump offset width length

Parameters

offset Width-aligned offset in Reflective Memory at which to begin
the peek and display (I). Valid offset values are 0x0 to
O0x3FFFFFF for 64MB cards, 0x0 to Ox7FFFFFF for 128MB cards
or 0x0 to OxOFFFFFF for 256MB cards.

width Indicates access width in bits, which is one of the following (I):
Value Description

1 8-bit byte

2 16-bit word

4 32-bit longword
8 64-bit longword

length Number of width units to peek and display (I), which is
determined using the formula [buffer size] / width. For
example, the length of a buffer size of 1024 in 32-bit longwords
is 256 (1024 / 4 = 256).

Width Bit Maximum Length (Dec/Hex)
for 128MB Cards
bytes 134217728 (0x8000000)
words 67108864 (0x4000000)
32-bit longword 33554432 (0x2000000)
64-bit long 16777216 (0x1000000)
Example

UTILO > dump O 8 4

0 1
0x00000000:0123456789ABCDEF 0123456789ABCDEF] .#Eg-#EQ |
0x00000010:0123456789ABCDEF 0123456789ABCDEF] .#Eg-#EQ |

UTILO >

110 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.15 enableevent

RFM2g network event interrupts are not enabled by default. However, REM2g
error event interrupts are enabled by default so they will be counted. The user can
choose to disable the error events, in which case they will stay that way until the
user enables them or the driver is unloaded and reloaded. The enableevent
command enables a specific RFM event so a system interrupt can be generated on
the receiving node. The utility calls RFM2gEnableEvent() to enable the RFM

event.

Syntax

enableevent event

Parameters

event

Example

The interrupt event to enable. Interrupts correlate to the

following event IDs:

Interrupt

Reset Interrupt

Network Interrupt 1

Network Interrupt 2

Network Interrupt 3

Network Interrupt 4 (Init Interrupt)
Bad Data Interrupt

RX FIFO Full Interrupt

Rogue Packet Detected and Removed
RX RIFO Almost Full

SYNC Loss

Mem Write Inhibited

Local Mem Parity Error

UTILO > enableevent 0O
Interrupt event "RESET" is enabled.
uUTILO >

Event ID

— = OOk W= O

—_ O

rfm2g_util.c Utility Program 111

2.3.16 enablecallback

The enablecallback command enables the interrupt notification for one event on
one board.

A message is returned to the console window each time an event call successfully
occurs using this command. For example, if four callbacks have been previously
performed and a new callback is made from REM2GEVENT_INTRS3, the
following displays in the console window:

EventCallback: Counter = 5
node 2 Received “RFM2GEVENT_INTR3” interrupt from node O

Extended information for a value can also be displayed. For example:

Asynchronous Event Notification has been enabled for the
“NETWORK INT 1" event.

The utility calls RFM2gEnableEventCallback() to enable interrupt notification.
Syntax

enablecal lback event

Parameters

event Specifies which interrupt notification to enable (I). Interrupts
correlate to the following event IDs:

Interrupt Event ID
Reset Interrupt

Network Interrupt 1

Network Interrupt 2

Network Interrupt 3

Network Interrupt 4 (Init Interrupt)
Bad Data Interrupt

RX FIFO Full Interrupt

Rogue Packet Detected and Removed
RX RIFO Almost Full

SYNC Loss

Mem Write Inhibited

Local Mem Parity Error

—_ = 0 0NN U W R O

—_ O

Example

UTILO > enablecallback 1

Asynchronous Event Notification has been enabled for the
"NETWORK INT 1" event.

UTILO >

112 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.17 errormsg

The errormsg command prints a text string describing a runtime error.

Runtime errors are returned by the API functions. The utility calls
RFM2gErrorMsg() to obtain the error code pointer.

Syntax

errormsg ErrorCode

Parameters
ErrorCode Return code from an API function (I).
Example

UTILO > errormsg O
ErrorCode = 0, Msg = No current error
UTILO >

2.3.18 exit

The exit command terminates the command line interpreter program.

Syntax

Example

UTILO > exit
Exit? (y/n):y

2.3.19 first

The first command displays the first REM2g offset available for use by an
application program. The utility calls RFM2gFirst() to return the first available
RFM2g offset.

Syntax

first

Example

UTILO > first
First 0x00000000

rfm2g_util.c Utility Program 113

2.3.20 getdarkondark

The getdarkondark command returns the state of the RFM2g Dark on Dark
feature. The utility calls RFM2gGetDarkOnDark() to retrieve the state of the Dark
on Dark feature.

Syntax

getdarkondark

Example

Please enter device number: 0O

UTILO > getdarkondark
The Reflective Memory board’s Dark On Dark feature is
turned OFF.

UTILO >

2.3.21 getdebug
7
E NOTE
Users should not use this command unless directed to do so by GE support personnel.

The getdebug command displays a copy of the current setting of the debug flags
of the device driver. The RFM2g device driver can generate debug messages by
checking a bit in the driver’s debug flags variable.

A maximum of 32 debug message classes are possible. Each debug message class
is assigned to an individual bit within this 32-bit control word. A nonzero (0) bit
implies that the corresponding debug message class can be generated by the
RFM2g device driver. The utility calls RFM2gGetDebugFlags() to retrieve debug
control flags.

Syntax
getdebug

Example

UTILO > getdebug
Current Debug Flags: 0x00000000
uUTILO >

2.3.22 getdmabyteswap

The getdmabyteswap command returns the state of the DMA byte swapping
hardware. The utility calls RFM2gGetDMAByteSwap() to return the DMA byte
swapping state.

Syntax

getdmabyteswap

Example

UTILO > getdmabyteswap
The Reflective Memory board®"s DMA Byte Swap is ON.
uTILO >

114 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.23 geteventcount

The geteventcount command displays the current event count for the specified
event or all events. The utility calls RFM2gGetEventCount() to retrieve event
count for the specified event or all events.

Syntax

geteventcount

Parameters

event Where “event” is one of the following interrupt events [0-12]:

Interrupt Event ID
Reset

Network Interrupt 1

Network Interrupt 2

Network Interrupt 3

Network Interrupt 4 (Init Interrupt)
Bad Data Interrupt

RX FIFO Full Interrupt

Rogue Packet Detected and Removed
RX RIFO Almost Full

SYNC Loss

Mem Write Inhibited 10
Local Mem Parity Error 11
All Events 12

OCXOINNU B WDN PO

Example

UTILO > geteventcount 1
The event count for Network INT 1 is O
UTILO >

2.3.24 getled

The getled command displays the current ON/OFF state of the Reflective Memory
board's STATUS LED. The utility calls RFM2gGetLed() to retrieve the STATUS
LED state.

Every RFM2g interface board has a STATUS LED which is turned ON whenever
the RFM2g device is reset and turned OFF by the RFM2g device driver during
initialization. When the RFM2g device driver is unloaded, the STATUS LED is
turned ON again.

Syntax

getled

Example

UTILO > getled
The Reflective Memory board®s Status LED is OFF.
uTILO >

rfm2g_util.c Utility Program 115

2.3.25 getmemoryoffset

The getmemoryoffset command displays the network memory offset of the
Reflective Memory board. The utility calls RFM2gGetMemoryOffset()to retrieve
the network memory offset.

Syntax

getmemoryoffset

Example

UTILO > getmemoryoffset

The Reflective Memory board®s memory offset is
0x00000000.

UTILO >

2.3.26 getloopback

The getloopback command displays the state of the REM2G transmit loopback
hardware. The utility calls RFM2gGetLoopback() to return the transmit loopback
state.

Syntax
getloopback
Example

UTILO > getloopback
The Reflective Memory board’s transmit loopback is
Off.

UTILO >

2.3.27 getparityenable

The getparityenable command displays the state of the REM2g’s parity enable.
The utility calls RFM2gGetParityEnable() to display the parity enable state.

Syntax
getparityenable

Example

UTILO > getparityenable
The Reflective Memory board’s parity enable is OFf.
uTILO >
2.3.28 getpiobyteswap

The getpiobyteswap command displays the state of PIO byte swapping
hardware. The utility calls RFM2gGetP10ByteSwap() to return the PIO byte
swapping state.

Syntax
getpiobyteswap

Example

UTILO > getpiobyteswap
The Reflective Memory board"s PIO Byte Swap is ON.
UTILO >

116 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.29 getslidingwindow

The getslidingwindow command displays the offset and size of the current
sliding memory window. The utility calls RFM2gGetSlidingWindow() to retrieve
the information.

Syntax

getslidingwindow

Example

UTILO > getslidingwindow
The 2 MByte Sliding Window begins at offset 0x00400000.
UTILO >

2.3.30 getthreshold

The getthreshold command displays the value of the current DMA threshold. The
RFM2g device driver will use the bus master DMA feature present on some
RFM2g devices if an I/O request qualifies (i.e. if the size is larger than or equal to
the Threshold). One of the criteria for performing the DMA is that the I/O
transfer be long enough that the time saved by performing the DMA offsets the
overhead processing involved with the DMA itself. The default DMA threshold is
driver-dependent. Refer to your driver-specific manual for the default DMA
threshold value.

This command is useful since the amount of this overhead can vary between host
computer configurations. The user can set a new threshold using the setthreshold
command. The utility calls RFM2gGetDMAThreshold() to return the current
DMA threshold value.

Syntax

getthreshold

Example

UTILO > getthreshold
Current DMA Threshold: "32"
UTILO >

2.3.31 gettransmit

7,

The gettransmit command displays status of the Reflective Memory board’s
transmitter. The utility calls RFM2gGetTransmit()to display the state of the
Reflective Memory board’s transmitter.

Syntax

gettransmit

Example

UTILO > gettransmit
The Reflective Memory board’s Transmitter is ON
uTILO >

rfm2g_util.c Utility Program 117

2.3.32 help

The help command lists the name of each defined command and a short
description of it. This command can also be used to show detailed usage
information for a specific rfm2g_util.c command.

Syntax
help command
Parameters
command The command help to display (I). Entering help displays a list

of all commands for which help is available. Entering help
followed by the command displays help information for the
command if any is available.

118 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

Examples

UTILO > help setled
setled: Set the current ON/OFF state of the Reflective Memory
board®"s Status LED

Usage: setled state
"state" is one of the following (0-1):
0 for OFF
1 for ON

UTILO > help

COMMAND PARAMETERS
boardid

cancelwait event
checkring

clearevent event
cleareventcount event
clearowndata

config

devname

disableevent event
disablecal lback event
dllversion

driverversion

drvspecific

dump offset width length
enableevent event
enablecal lback event

Press ENTER for more commands ...

COMMAND PARAMETERS
errormsg ErrorCode
exit

first

getdarkondark

getdebug

getdmabyteswap

geteventcount event
getled

getmemoryoffset

getloopback

getparityenable

getpiobyteswap

getthreshold

gettransmit

help [command]
mapuser offset pages

rfm2g_util.c Utility Program 119

Press ENTER for more commands ...

COMMAND PARAMETERS

mapuserbytes offset bytes

memop pattern offset width length verify
float patterntype

nodeid

peek8 offset

peekl6 offset

peek32 offset

peek64 offset

performancetest

poke8 value offset

pokel6 value offset

poke32 value offset

poke64 value offset

quit

read offset width length display

repeat [-p] count cmd [arg.-...]

send event tonode [ext_data]

Press ENTER for more commands ...

COMMAND PARAMETERS

setdarkondark state

setdebug flag

setdmabyteswap state

setled state

setloopback state

setmemoryoffset offset

setparityenable state

setpiobyteswap state

setthreshold value

settransmit state

size

unmapuser UserMemoryPtr pages

unmapuserbytes UserMemoryPtr bytes

wailt event timeout

write value offset width length
UTILO >

120 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.33 mapuser

The mapuser command allows the user to map RFM memory pages to the user
space.

The utility calls RFM2gUserMemory() to map RFM2g memory. Refer to driver
specific manual for additional functionality.

% NOTE

When using the RFM2g-DRV-LNX Linux version of the driver, the mapped area must be reserved by
booting Linux with the Linux mem command.

Syntax
mapuser offset pages

Parameters

offset Offset in Reflective Memory at which to begin the mapping (I).
Valid offset values are 0x0 to [size of Reflective Memory on
device - system memory page size].

pages Number of memory pages to map (I).

Examples

The following example displays the values of the mapped region:

UTILO > mapuser
mapuser: Get Set the User buffer offset and pages
Usage: mapuser offset pages

“"offset” is the beginning offset to map.

pages' is the number of pages of memory to map.
UTILO >

The following example maps a buffer that begins at offset 0 and is 100 system
pages long and Linux was booted with the mem setting mem=63M:

UTILO > mapuser 0 100
RFM2gUserMemory assigned UserMemoryPtr = 0x50000000
UTILO >

rfm2g_util.c Utility Program 121

2.3.34 mapuserbytes

The mapuserbytes command allows the user to map RFM memory to the user
space.

The utility calls RFM2gMapUserBytes() to map RFM2g memory bytes. Refer to
driver specific manual for additional functionality.

Syntax
mapuserbytes offset bytes

Parameters

offset Offset in Reflective Memory at which to begin the mapping (I).
Valid offset values are 0x0 to [size of Reflective Memory on
device - system memory page size].

bytes Number of memory bytes to map (I).

Examples

The following example displays the values of the mapped region:

UTILO > mapuserbytes
mapuserbytes: Get Set the User buffer offset and pages
Usage: mapuserbytes offset bytes
"offset” is the beginning offset to map.
"bytes" is the number of bytes of memory to map.
UTILO >
The following example maps a buffer that begins at offset 0 and is 100 system
passes long and Linux was booted with the mem setting mem=63M:

UTILO > mapuserbytes 0 0x64000
RFM2gUserMemoryByte assigned UserMemoryPtr = 0x50000000
UTILO >

122 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.35 memop

The memop command allows the user to fill or verify an area of Reflective
Memory. This utility calls RFM2gPoke8(), RFM2gPokel6(), RFM2gPoke32() or
RFM2gPoke64 () to fill the memory.

Syntax

memop pattern offset width length verify float patterntype

Parameters
pattern The pattern to write or verify (I).

offset Width-aligned offset in Reflective Memory at which to begin
the read or verify (I). Valid offset values are 0x0 to OX3FFFFFF
for 64MB cards, and 0x0 to Ox7FFFFFF for 128MB cards.

width Indicates access width in bits, which is one of the following (I):
Value Description

1 8-bit byte

2 16-bit word

4 32-bit longword
8 64-bit longword

length Number of width units to write or verify (I), which is
determined using the formula [buffer size] / width. For
example, the length of a buffer size of 1024 in 32-bit longwords
is 256 (1024 / 4 = 256).

Width Bit Maximum Length (Dec/Hex)
for 128MB Cards

bytes 134217728 (0x8000000)

words 67108864 (0x4000000)

32-bit longword 33554432 (0x2000000)

64-bit long 16777216 (0x1000000)

verify Writes (0) or verifies (1) the pattern in Reflective Memory.

float Specifies whether the pattern is (1) or is not (0) a floating point
value.

patterntype Specifies the pattern type, which is one of the following (I):

Type Description

0 Pattern for fixed data

1 Pattern for incrementing address

2 Pattern for incrementing transfers count

3 Pattern for inverted incrementing
address

Example

The following example writes the value 0x123456789 ABCDEF to Reflective
Memory, starting at offset 0. REM2gPoke64() is called 128 times, incrementing
offset 8 each time it is called:

UTILO > memop 0x123456789ABCDEF O 8 128 0 O

rfm2g_util.c Utility Program 123

2.3.36 nodeid

The nodeid command displays the value of the RFM2g device node ID. Each
RFM2g device on a RFM2g network is uniquely identified by its node ID, which is
manually set by switches on the device when the RFM2g network is installed. The
utility calls RFM2gNode ID() to return the RFM2g device node ID.

Syntax
nodeid
Example
UTILO > nodeld
Node ID 0x01
UTILO >

124 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.37 peek8, peekl6, peek32 and peek64

The peek commands display the contents of the specified RFM2g offset. The
specified memory offset is accessed as either an 8-bit byte, a 16-bit word, a 32-bit
longword or a 64-bit longword and is displayed as a hexadecimal version of the
RFM2g contents.

These commands make no attempt to lock the REM2g during the access. These
utilities call RFM2gPeek8(), RFM2gPeek16(), RFM2gPeek32() and
RFM2gPeek64() to read from an RFM2g offset.

g NOTE

See the section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte
data.

Syntax

peek8 offset
peekl6 offset
peek32 offset

peek64 offset
Parameters

offset Offset in Reflective Memory from which to read (I).
Example (peek8)

UTILO > peek8 0
Data: 0x78 Read from Offset: 0x00000000
UTILO >

Example (peek16)

UTILO > peekl6 O
Data: 0x5678 Read from Offset: 0x00000000
UTILO >

Example (peek32)

UTILO > peek32 0O
Data: 0x12345678 Read from Offset: 0x00000000
UTILO >

Example (peek64)

UTILO > peek64 0O
Data: 0x123456789ABCDEF Read from Offset: 0x00000000
UTILO >

rfm2g_util.c Utility Program 125

2.3.38 performancetest

The performancetest command uses the RFM2gRead() and RFM2gWrite() API
functions to display the speed of reads and writes performed on your system.

Syntax

performancetest

Example

g NOTE

The numbers in the following example are for illustration purposes only. Your actual system
performance will vary.

UTILO > performancetest

GE RFM2g Performance Test
(DMA Threshold is 32)

Bytes Read 10ps Read MBps Write 10ps Write MBps
4 277760 1.1 900823 3.4
8 456448 3.5 1254411 9.6
12 343536 3.9 1197772 13.7
16 275421 4.2 900820 13.7
20 229826 4.4 724569 13.8
[---1
1048576 245 245.5 142 142.0
1310720 196 245.6 113 141.9
1572864 163 245.3 94 141.8
1835008 140 245.9 81 141.8
2097152 122 245.0 71 142.0
UTILO >

126 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.39 poke8, pokel6, poke32 and poke64

The poke commands may be used to set or update consecutive RFM2g locations.
The specified memory offset is written as either an 8-bit byte, a 16-bit word, a
32-bit longword or a 64-bit longword and must be entered in hexadecimal format.

These commands make no attempt to lock the REM2g shared memory during the
access. The utility calls RFM2gPoke8(), RFM2gPokel6(), RFM2gPoke32() and
RFM2gPoke64 () to write to an RFM2g offset.

g NOTE

See section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte

data.
Syntax
poke8 value offset
pokel6 value offset
poke32 value offset
poke64 value offset
Parameters

value offset Value written to offset (I).

Example (poke8)
UTILO > poke8 255 0
Data: OxFF Written to Offset: 0x00000000
UTILO >

Example (poke16)

UTILO > pokel6 65535 0
Data: OxFFFF Written to Offset: 0x00000000
UTILO >

Example (poke32)
UTILO > poke32 4294967295 0
Data: OxFFFFFFFF Written to Offset: 0x00000000
UTILO >

Example (poke64)

UTILO > poke64 0x123456789ABCDEF 0O
Data: 0x123456789ABCDEF Written to Offset: 0x00000000
UTILO >

rfm2g_util.c Utility Program 127

2.3.40 quit

The quit command terminates the command line interpreter.
Syntax

quit
Example

UTILO > quit
Exit? (y/n):
UTILO > vy

C: >

128 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.41 read

The read command reads data from the RFM2g node to system memory. Once
transferred, the data is displayed. The utility calls RFM2gRead() to read data
buffers. If DMA threshold and other conditions are met, DMA will be used;
otherwise, PIO will be used.

E NOTE

See section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte
data.

If byte swapping is enabled on the RFM2g device, offset and length must be width aligned.
Syntax
read offset width length display

Parameters

offset Offset in Reflective Memory at which to begin the read (I).
Valid offset values are 0x0 to Ox3FFFFEF for 64MB cards, and
0x0 to Ox7FFFFFF for 128 MB cards.

width Indicates access width in bits, which is one of the following (I):
Value Description

1 8-bit byte

2 16-bit word

4 32-bit longword
8 64-bit longword

length Number of width units to display (I), which is determined
using the formula [buffer size] / width. For example, the length
of a buffer size of 1024 in 32-bit longwords is 256 (1024 / 4 =
256).

Width Bit Maximum Length (Dec/Hex)
for 128MB Cards

bytes 134217728 (0x8000000)

words 67108864 (0x4000000)

32-bit longword 33554432 (0x2000000)

64-bit long 16777216 (0x1000000)

display Display read data to the output device (0 = do not display;
1 = display information (default)).

rfm2g_util.c Utility Program 129

Example

UTILO >read 0 1 0x40

0 12 3 456 7 8 9 ABCDEF
0x00000000: 00 00 00 00 00 00 00 00 00 00O 00 OO OO 00 00 00 J.--ewwwammeuunn- |
0x00000010: 00 00 00 OO 00O OO 00 OO 00 OO 00 OO 0O 00 00 00 J.--cvwwaanoannn- |
0x00000020: 00 00 00 OO 00 OO0 00 OO0 00 OO 00 OO 0O 00 00 00 J.--cvwwnamaunnn- |
0x00000030: 00 00 00 00 00 OO0 00 00 00 00O 00 OO OO 00 00 00 J.--evwoammeunnn- |

UTILO >read O 1 0x40 O

UTILO >

2.3.42 repeat

The repeat command is used to execute another utility command a specified
number of times, as rapidly as possible. The command to be executed is supplied
as an argument to the repeat command.

The -p switch may be useful to mark the progress of commands with large
repetition counts. If the switch is used, the current pass number is output to the
screen, followed by a TAB character. If the switch is omitted, no indication of the
repeat command’s progress is given.

The repeat command immediately stops if an error is reported while the
command is executing.

Syntax
repeat [-p] count cmd [arg-...]

Parameters

-p Displays the number of times the specified utility command
has repeated and updates this number to the screen.

count The number of times to repeat the specified utility command.

cmd The utility command to repeat.

arg. .. Any arguments required by the specified utility command to
repeat.

Example

UTILO > repeat 4 send 1 OXFF

Network Int 1 interrupt event was sent to node 255.
Network Int 1 interrupt event was sent to node 255.
Network Int 1 interrupt event was sent to node 255.
Network Int 1 interrupt event was sent to node 255.
UTILO >

130 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.43 return

The return command is used to exit a driver-specific sub-menu of commands
(accessed using the drvspecific command) so that you can use common

rfm2g_util.c commands.

Refer to your driver-specific manual for information on commands specific to

your RFM2g driver.
Syntax

return

Examples
To access driver-specific commands:

UTILO > drvspecific
Welcome to the driver specific menu
UTILDRVSPEC >

To display a list of driver-specific commands:

UTILDRVSPEC > help

COMMAND PARAMETERS

help [command]

repeat [-p] count cmd [arg-..]
return

UTILDRVSPEC >

To exit the driver-specific commands:

UTILDRVSPEC > return
Welcome to the main menu
UTILO >

rfm2g_util.c Utility Program 131

2.3.44 send

Use the send command to transmit an interrupt event and a binary value to
another node. RFM2g interrupt event types are available for an application
program to use in signaling events to other REM2g nodes.

If the destination RFM2g node number is given as -1, the event will be broadcast
to all other RFM2g nodes on the network. The ext_data parameter is a user-
defined, 32-bit value to send with the interrupt event. The utility calls
RFM2gSendEvent() to send the REM2g interrupt event.

Syntax
send event tonode [ext data]

Parameters

event The type of interrupt event to send ().
Interrupts correlate to the following event IDs:
Interrupt Event ID
Reset Interrupt 0
Network Interrupt 1 1
Network Interrupt 2 2
Network Interrupt 3 3
Network Interrupt 4 4

tonode Who will receive the interrupt event (I) (-1 sends the event to
all nodes).

% NOTE

A node cannot send an event to itself.
ext_data User-defined 32-bit extended data to send (I).
Example

UTILO > send O O
“"RESET" interrupt event was sent to node O.
UTILO >

132 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.45 setdarkondark

The setdarkondark command sets the state of the REM2g Dark on Dark feature.
The utility RFM2gSetDarkOnDark() sets the state of the Dark on Dark feature.

Syntax
setdarkondark state
Parameters
state Sets the state of Dark on Dark feature, which is one of the
following (I):
State Description
0 Turns Dark On Dark OFF
1 Turns Dark On Dark ON
Example

UTILO > setdarkondark 1
The Reflective Memory board’s Dark On Dark feature is

turned ON.
UTILO >

rfm2g_util.c Utility Program 133

2.3.46 setdebug

% NOTE

Application programs should not use this command unless directed to do so by GE support
personnel.

Each possible REM2g device driver debug output message is assigned to a debug
message class. The device driver will generate messages of that class if the
corresponding flag bit is set in the control word. The setdebug command allows
an application program to set that control word (i.e. this command sets the
driver’s debug flags). The change is effective immediately.

Application programs do not normally need to alter the setting of the debug
message output control word. The utility calls RFM2gSetDebugFlags() to turn

debug flags ON or OFF.
Syntax
setdebug [-] flag
Parameters
- Clears instead of setting the flag.
flag New debug flags (I). Valid strings are:
String Description
allflags Turns all debug flags ON
close Trace close(2) system calls
dma Trace DMA calls
error Report critical errors
init Trace device probing and search
intr Trace interrupt service
ioctl Trace ioctl(2) system calls
minphys Trace minphys limits
mmap Trace mmap(2) system calls
mutex Trace synchronization and locking
not_intr Trace non-RFM interrupt service
open Trace open(2) system calls
peek Trace peeks
poke Trace pokes
read Trace read(2) system calls
slow Let syslogd get the message
strat Trace read/write strategy
timer Trace interval timer
trace Trace subroutine entry/exit
write Trace write(2) system calls
Example

UTILO > setdebug error
Debug Flag “error” was set.
uTILO >

134 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.47 setdmabyteswap

The setdmabyteswap command enables or disables byte swapping DMA
transfers to or from an RFM2g device. This command provides 4-byte swaps only
(i.e. byte swapping based on size is not performed by the REM2g device). The
utility calls RFM2gSetDMAByteSwap() to turn DMA byte swapping ON or OFF.

g NOTE

DMA byte swapping may be enabled by default when the driver has been built for use on big
endian systems. Refer to your driver-specific manual for the default setting of DMA byte swapping.

Syntax
setdmabyteswap state
Parameters
state Sets the state of DMA byte swapping, which is one of the
following (I):
State Description
0 Turns DMA byte swapping OFF
1 Turns DMA byte swapping ON
Example
UTILO > setdmabyteswap 1
The Reflective Memory board"s DMA Byte Swap is ON.
UTILO >
2.3.48 setled

The setled command sets the current ON/OFF state of the Reflective Memory
board's STATUS LED. The utility calls RFM2gSetLed() to turn the STATUS LED
ON or OFF.

Syntax
setled state
Parameters
state The state of the STATUS LED: 0=>OFF, 1=>0ON (O).
Example

UTILO > setled 1
The Reflective Memory board’s status LED is ON
UTILO >

rfm2g_util.c Utility Program 135

2.3.49 setloopback

The setloopback command sets the state of the RFM2G transmit loopback
hardware. The utility calls RFM2gSetLoopback() to set the transmit loopback

state.
Syntax
setloopback state
Parameters
state Sets the state of transmit loopback hardware, which is one of
the following (I):
State Description
0 Turns loopback OFF
1 Turns loopback ON
Example

UTILO > setloopback 0O
The Reflective Memory board’s transmit loopback is OFF.
UTILO >

2.3.50 setmemoryoffset

The setmemoryoffset command sets the memory offset status of the Reflective
Memory board. The utility calls RFM2gSetMemoryOffset()to set the memory

offset.
Syntax
setmemoryoffset offset
Parameters
offset The offset to the network address description.
0 No offset
1 0x4000000
2 0x8000000
3 0xc000000
Example

UTILO > setmemoryoffset 1
The Reflective Memory board®s memory offset is 0x40000000.
UTILO >

136 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.51 setparityenable

The setparityenable command sets the state of the REM2g’s parity enable. The
utility RFM2gSetParityEnable() sets the state of the parity enable.

Syntax
setparityenable state
Parameters
state Sets the state of Parity Enable, which is one of the following (I):
State Description

0 Turns Parity Enable OFF

1 Turns Parity Enable ON
Example

UTILO > setparityenable 0O
The Reflective Memory board’s parity enable is OFF.
UTILO >

2.3.52 setpiobyteswap

The setpiobyteswap command enables or disables byte swapping PIO transfers
to or from an RFM2g device. This function provides 4-byte swaps only (i.e. byte
swapping based on size is not performed by the RFM2g device). The utility calls
RFM2gSetP10ByteSwap() to turn PIO byte swapping ON or OFF.

% NOTE

PIO byte swapping may be enabled by default when the driver has been built for use on big endian
systems. Refer to your driver-specific manual for the default setting of PIO byte swapping.

Syntax
setpiobyteswap state
Parameters
state Sets the state of PIO byte swapping, which is one of the
following (I):
State Description
0 Turns PIO byte swapping OFF
1 Turns PIO byte swapping ON
Example

UTILO > setpiobyteswap 1
The Reflective Memory board®"s P10 Byte Swap is ON.
uUTILO >

rfm2g_util.c Utility Program 137

2.3.53 setslidingwindow

The setslidingwindow command sets the base Reflective Memory offset of the
sliding memory window. The size of the sliding window is set with switches or
jumpers on the Reflective Memory board. The available window sizes are

2 MByte, 16 MByte, 64 MByte, and the total memory size. The offset of the sliding
window must be a multiple of the size of the sliding window. The utility calls
RFM2gGetSlidingWindow() to get the window size, and
RFM2gSetSlidingWindow() to set the offset.

Syntax

setslidingwindow offset

Example

UTILO > setslidingwindow 0x00400000
The 2 MByte Sliding Window begins at offset 0x00400000.
UTILO >

2.3.54 setthreshold

The setthreshold command sets the transfer size at which reads and writes will
use DMA to transfer data. If the read or write command is used, DMA will be
used if the size of the data is larger than or equal to the threshold value. A
threshold can be set for each handle created by a call to RFM2gOpen().

The amount of cycles taken to set up a DMA transfer can increase the transfer
time for small transfer sizes. The transfer size for which DMAs are more efficient
than standard transfers varies, depending on the system.

DMA is generally preferred over the PIO method for transferring data. PIO
operations require the usage of the CPU to process the transfer, while DMA
enables the Reflective Memory controller to access system memory while leaving
the CPU'’s resources unaffected. However, the best value to use (i.e. PIO vs. DMA)
is system-dependent. The RFM2g driver performs approximately five PCI
accesses to set up and process a DMA request and generates an interrupt on
completion of the DMA operation. In general, DMA is the preferred method if a
PIO transfer requires more than six to ten PCI cycles to complete.

A value of OxFFFFFFFF specifies that DMAs will never be used for data transfer.
The utility calls RFM2gSetDMAThreshold() to set the DMA threshold size.

% NOTE

The default DMA threshold value is driver-dependent and should be changed only if recommended
by the driver’s documentation. Refer to your driver-specific manual for more information, including
the default value.

Syntax
setthreshold value
Parameters
value New DMA threshold value (I).
Example

UTILO > setthreshold 128
UTILO >

138 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.55 settransmit

The settransmit command sets the state of the RFM2g’s transmitter. The utility
RFM2gSetTransmit() sets the state of the Reflective Memory board’s transmitter.

Syntax
settransmit state
Parameters
state Sets the state of Transmitter, which is one of the following (I):
State Description
0 Turns Transmitter OFF
1 Turns Transmitter ON
Example
UTILO > settransmit 1
The Reflective Memory board’s Transmitter is ON.
UTILO >
2.3.56 size

The size command displays the value of the total amount of virtual memory
space available on the RFM2g device. The user may access RFM2g space between
offset 0 and RFM2gSize(rh)-1.

RFM2g boards may be configured with a variety of memory sizes. The device
driver and API library determine the amount of memory contained on an RFM2g
device as it is initialized. A user may then use size to obtain the number of bytes
on the board. The utility calls RFM2gSize() to return the RFM2g device’s total
available memory space.

Syntax
size
Example
UTILO > size
Size 134217728 (0x08000000)
UTILO >

rfm2g_util.c Utility Program 139

2.3.57 unmapuser

The unmapuser command unmaps the REM2g memory buffer from user memory
space. The utility calls RFM2gUnMapUserMemory () to unmap the RFM2g memory
buffer.

Syntax

unmapuser UserMemoryPtr pages

Parameters

UserMemoryPtr Pointer returned by the mapuser command (O).

Pages The number of pages mapped by the mapuser command (O).
Example

UTILO > unmapuser 0x50000000 100
UTILO >

2.3.58 unmapuserbytes

The unmapuserbytes command unmaps the RFM2g memory buffer from user
memory space. The utility calls RFM2gUnMapUserBytes() to unmap the RFM2g
memory bytes buffer.

Syntax

unmapuserbytes UserMemoryPtr bytes

Parameters
UserMemoryPtr Pointer returned by the mapuserbytes command (O).

Pages The number of pages mapped by the mapuserbytes command
(O).

Example

UTILO > unmapuserbytes 0x50000000 100
UTILO >

140 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.3.59 wait

The wait command allows the user to wait for an RFM2g interrupt event. The
utility program blocks until the next REM2g interrupt event of the requested type
has been received, or the timeout period expires. The event must be enabled by
this application before it can be received; otherwise, a timeout will occur. The
utility calls RFM2gWai tForEvent() to wait for the RFM2g event.

Syntax
wait event timeout
Parameters
event The type of interrupt event on which to wait ().
Interrupts correlate to the following event IDs:
Interrupt Event ID
Reset Interrupt 0
Network Interrupt 1 1
Network Interrupt 2 2
Network Interrupt 3 3
Network Interrupt 4 (Init Interrupt) 4
Bad Data Interrupt 5
RX FIFO Full Interrupt 6
Rogue Packet Detected and Removed 7
RX RIFO Almost Full 8
SYNC Loss 9
Mem Write Inhibited 10
Local Mem Parity Error 11
timeout Indicates the time, in milliseconds, to wait for the event before
returning.
Example
UTILO > wait 1 1000
Waiting for event...
Received Network INT 1 event from node 5.
This events extended data is 0X12345678.
UTILO > wait 0 O
Waiting for event ... Notification for this event has already been requested.
UTILO > wait O 10000
Waiting for event ... Notification for this event has already been requested.
UTILO > wait 1 O
Waiting for event ... Timed out.
UTILO > wait 1 10000
Waiting for event ... Timed out.
UTILO >

rfm2g_util.c Utility Program 141

2.3.60 write

The write command writes one or more bytes starting at an offset in Reflective
Memory (i.e. allows the user to fill memory area with a byte, word or longword).
The utility calls RFM2gWrite() to write data buffers. If DMA threshold and other
conditions are met, DMA will be used; otherwise, PIO will be used.

E NOTE

See section Big Endian and Little Endian Data Conversions, page 44 for information on the big
endian/little endian byte-reordering process used by the RFM2g driver when accessing multibyte
data.

If byte swapping is enabled on the RFM2g device, offset and length must be width aligned.
Syntax

write value offset width length

Parameters

value Byte, word or longword value to write to the range specified by
offset, length and width (I).

offset Width-aligned offset in Reflective Memory at which to begin
the write (I). Valid offset values are 0x0 to 0x3FFFFFF for 64MB
cards, and 0x0 to Ox7FFFFFF for 128 MB cards.

width Indicates access width in bits, which is one of the following (I):
Value Description

1 8-bit byte

2 16-bit word

4 32-bit longword
8 64-bit longword

length Number of width units to write (I), which is determined using
the formula [buffer size] / width. For example, the length of a
buffer size of 1024 in 32-bit longwords is 256 (1024 / 4 = 256).

Width Bit Maximum Length (Dec/Hex)
for 128MB Cards

bytes 134217728 (0x8000000)

words 67108864 (0x4000000)

32-bit longword 33554432 (0x2000000)

64-bit long 16777216 (0x1000000)

Example

UTILO > write 0 O 1 16 1000
Write used DMA.

Write completed.

UTILO >

142 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

2.4 Troubleshooting the rfm2g_util.c Command Line Interpreter

If you encounter problems building or exercising the REM2g driver, this section
contains possible solutions and discusses the most common sources of errors and
how to reduce error possibilities.

2.4.1 Errors

Use the following method to perform driver build troubleshooting.

If the compiler outputs the following error, the operating system for which the file
is to be compiled has not been defined in the build specification.

C:\RFM2g\PCI\VxWorks\rfm2g_util.c:59: #error
Please define DEVICE_PREFIX for your driver.

To resolve this error, define the operating system in the build options as follows:

Operating System Build Option Definition
VxWorks -DRFM2G_VXWORKS
Solaris -DRFM2G_SOLARIS
Linux -DRFM2G_LINUX
Windows None

rfm2g_util.c Utility Program 143

3 « RFM2g Sample Applications

This chapter contains information on the three sample application programs
delivered with the REM2g driver in the rfm2g/samples folder. These programs
provide examples on how to use the driver and API with your application and are
intended to work together to demonstrate basic data transfer and interrupt
handshaking:

* rfm2g sender.c

* rfm2g receiver.c

* rfm2g map.c

To use the programs together, it is assumed that:

— Two systems are present
— Each system contains a Reflective Memory card
— The Reflective Memory cards in the systems are connected to each other
— Each system has the RFM2g device driver installed

See your driver-specific documentation for the location of these files and
information on how to build the executable programs.

3.1 rfm2g_sender.c

The rfm2g_sender.c program runs on system 1 and does the following:

1. Writes a small buffer of data to Reflective Memory

2. Sends an interrupt event to system number 2

3. Waits to receive an interrupt event from system number 2
4

. Reads a buffer of data (written by system number 2) from a different Reflec-
tive Memory location

5. Closes the RFM2g driver.

3.2 rfm2g_receiver.c

The rfm2g_receiver.c program runs on system 2 and does the following:

1. Opens the RFM2g driver
2. Waits to receive an interrupt event from system number 1

3. Reads the buffer of data (written by system number 1) from Reflective Mem-
ory

4. Writes the buffer of data to a different Reflective Memory location
5. Sends an interrupt event to system number 1
6. Closes the REM2g driver.

144 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

3.3 rfm2g_map.c

The rfm2g_map.c program demonstrates the usage of the RFM2gUserMemory ()
function, which enables you to obtain a pointer for directly accessing the memory
of the RFM2g device.

3.4 rfm2g_sender.c and rfm2g_receiver.c Example Workflow

The following is an example workflow using the rfm2g_sender.c and
rfm2g_receiver.c programs.

In this example:

Verbose mode is not enabled for rfm2g_sender.c or rfm2g_receiver.c.
Continuous mode is enabled for rfm2g_receiver.c.

The device number of the host computer running the rfm2g_sender.c pro-
gram is 0.

The device number of the target computer running the rfm2g_receiver.c
program is 3.

. Start the rfm2g_sender.c program on the host system by following the

directions in your driver-specific manual.
The following is displayed in the console window:

PClI RFM2g Sender

Please enter device number:

. Type the RFM2g host’s device number (0, 1, etc.) and press <ENTER>.

The following is displayed in the host’s console window:

Do you wish for sender to loop continuously? (Y/N):

Enter Y to use the rfm2g_sender.c command in continuous mode so that it
will run continuously.

-Or-

Enter N if you do not want to use rfm2g_sender . c in continuous mode.

The following is displayed in the host’s console window:

Do you wish for sender to be verbose? (Y/N):

. Enter Y to use the rfm2g_sender.c command in verbose mode so that the

buffer contents are dumped to the screen while it is running.

Or

Enter N if you do not want to use rfm2g_sender .c in verbose mode.
The following is displayed in the host’s console window:

What is the Reflective Memory Node 1D of the computer
running the "RFM2G_receilver™ program?

Type the RFM2g target’s device number (0, 1, etc.) and press <ENTER>.
The following is displayed in the host’s console window:

Start the "RFM2G_receilver™ program on the other computer.
Press RETURN to continue ...

RFM2g Sample Applications 145

6. Start the rfm2g_receiver.c program on the target system by following the
directions in your driver-specific manual.
The following is displayed in the console window:

PCI RFM2g Receiver
Please enter device number:

7. Type the RFM2g target’s device number (0, 1, etc.) and press <ENTER>.
The following is displayed in the target’s console window:

Do you wish for receiver to loop continuously? (Y/N):

8. Enter Y to use the rfmwg_receiver.c command in continuous mode so that it
will run continuously.
-or-
Enter N if you do not want to use rfm2g_receiver .c in continuous mode.
The following is displayed in the target’s console window:

Do you wish for receiver to be verbose? (Y/N):

9. Enter Y to use the rfm2g_receiver.c command in verbose mode so that the
buffer contents are dumped to the screen while it is running.
Or
Enter N if you do not want to use rfm2g_receiver.c in verbose mode.
The following is displayed in the target’s console window:

Waiting 60 seconds to receive an interrupt from the other Node
.. -Received the interrupt from Node 3.

Data was read from Reflective Memory.

The data was written to Reflective Memory starting at offset
0x2000.

An interrupt was sent to Node 3.
Success!

10. Return to the host system. The following is displayed in the host’s console
window:

The data was written to Reflective Memory. An interrupt
was sent to Node 3.

Waiting 60 seconds for an interrupt from Node 3 ...
Received the interrupt from Node 3.

Success!

146 Common RFM2g Application Program Interface (API) and Command Line Interpreter for RFM2g Drivers

3.5 rfm2g_map.c Example Workflow

The following is an example workflow using the rfm2g_,map.c program.
In this example, the REFM2g device’s number is 0.

1. Start the rfm2g_map.c program by following the directions in your driver-
specific manual.

The following is displayed in the console window:

PCI RFM2g Map

Please enter device number:

2. Type the RFM2g device’s number (0, 1, etc.) and press <ENTER>.
The following is displayed in the host’s console window:

Wrote:
Wrote:
Wrote:
Wrote:

A5A50000, Read:
A5A50001, Read:
A5A50002, Read:
A5A50003, Read:

Success!

A5A50000
A5A50001
A5A50002
A5A50003

RFM2g Sample Applications 147

Maintenance

If a GE product malfunctions, please verify the following:

N o gk DN

8.

Software version resident on the product

System configuration

Electrical connections

Jumper or configuration options

Boards are fully inserted into their proper connector location
Connector pins are clean and free from contamination

No components or adjacent boards were disturbed when inserting or remov-
ing the board from the chassis

Quality of cables and I/O connections

If products must be returned, contact GE for a Return Material Authorization
(RMA) Number. This RMA Number must be obtained prior to any return.
RMA request forms can be obtained from:

defense.ge-ip.com/support/embeddedsupport/rmalocator

GE Technical Support is available at: 1-800-322-3616 in North America,
or +1-780-401-7700 for international calls. Requests for Technical Support can be
sent to:

support.embeddedsystems.ip@ge.com

Or, visit our website:

defense.ge-ip.com

Maintenance Prints

User level repairs are not recommended. The drawings and diagrams in this
manual are for reference purposes only.

Maintenance 148

http://defense.ge-ip.com/support/embeddedsupport/rmalocator
mailto:support.embeddedsystems.ip@ge.com
http://defense.ge-ip.com

© 2014 GE Intelligent Platforms Embedded
Systems, Inc. All rights reserved.

* indicates a trademark of GE Intelligent
Platforms, Inc. and/or its affiliates. All other
trademarks are the property of their respective
owners.

Confidential Information - This document
contains Confidential/Proprietary Information
of GE Intelligent Platforms, Inc. and/or its
suppliers or vendors. Distribution or
reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE
PROVIDED "AS IS", WITH NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND, WHETHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF DESIGN,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. ALL OTHER LIABILITY
ARISING FROM RELIANCE UPON ANY
INFORMATION CONTAINED HEREIN IS
EXPRESSLY DISCLAIMED.

GE Intelligent Platforms
Information Centers

Americas:
1800322 3616 or 1 256 880 0444

Asia Pacific:
86 10 6561 1561

Europe, Middle East and Africa:
Germany +49 821 5034-0
UK +44 1327 359444

Additional Resources

For more information, please visit
the GE Intelligent Platforms Embedded
Systems web site at:

defense.ge-ip.com

Publication No. 523-000447-000 Rev. J

http://defense.ge-ip.com/

	Table of Contents
	List of Tables
	Overview
	1 • Application Program Interface (API) Library
	1.1 Introduction
	1.2 Using the Application Program Interface
	1.2.1 Opening the RFM2g Driver
	1.2.2 Routine Code for Use with API Function Examples

	1.3 RFM2g Error Codes
	1.4 RFM2g API Functions
	1.5 RFM2g Opening and Closing API Functions
	1.5.1 RFM2gOpen()
	1.5.2 RFM2gClose()

	1.6 RFM2g Configuration API Functions
	1.6.1 RFM2gGetConfig()
	1.6.2 RFM2gUserMemory()
	1.6.3 RFM2gUnMapUserMemory()
	1.6.4 RFM2gUserMemoryBytes()
	1.6.5 RFM2gUnMapUserMemoryBytes()
	1.6.6 RFM2gNodeID()
	1.6.7 RFM2gBoardID()
	1.6.8 RFM2gSize()
	1.6.9 RFM2gFirst()
	1.6.10 RFM2gDeviceName()
	1.6.11 RFM2gDllVersion()
	1.6.12 RFM2gDriverVersion()
	1.6.13 RFM2gGetDMAThreshold()
	1.6.14 RFM2gSetDMAThreshold()
	1.6.15 RFM2gGetDMAByteSwap()
	1.6.16 RFM2gSetDMAByteSwap()
	1.6.17 RFM2gGetPIOByteSwap()
	1.6.18 RFM2gSetPIOByteSwap()

	1.7 RFM2g Data Transfer API Functions
	1.7.1 Data Transfer Considerations
	1.7.2 RFM2gRead()
	1.7.3 RFM2gWrite()
	1.7.4 RFM2gPeek8(), RFM2gPeek16(), RFM2gPeek32() and RFM2gPeek64()
	1.7.5 RFM2gPoke8(), RFM2gPoke16(), RFM2gPoke32() and RFM2gPoke64()

	1.8 RFM2g Interrupt Event API Functions
	1.8.1 RFM2gEnableEvent()
	1.8.2 RFM2gDisableEvent()
	1.8.3 RFM2gSendEvent()
	1.8.4 RFM2gWaitForEvent()
	1.8.5 RFM2gEnableEventCallback()
	1.8.6 RFM2gDisableEventCallback()
	1.8.7 RFM2gClearEvent()
	1.8.8 RFM2gCancelWaitForEvent()
	1.8.9 RFM2gClearEventCount()
	1.8.10 RFM2gGetEventCount()

	1.9 RFM2g Utility API Functions
	1.9.1 RFM2gErrorMsg()
	1.9.2 RFM2gGetLed()
	1.9.3 RFM2gSetLed()
	1.9.4 RFM2gCheckRingCont()
	1.9.5 RFM2gGetDebugFlags()
	1.9.6 RFM2g SetDebugFlags()
	1.9.7 RFM2gGetDarkOnDark()
	1.9.8 RFM2gSetDarkOnDark()
	1.9.9 RFM2gClearOwnData()
	1.9.10 RFM2gGetTransmit()
	1.9.11 RFM2gSetTransmit()
	1.9.12 RFM2gGetLoopback()
	1.9.13 RFM2gSetLoopback()
	1.9.14 RFM2gGetParityEnable()
	1.9.15 RFM2gSetParityEnable()
	1.9.16 RFM2gGetMemoryOffset()
	1.9.17 RFM2gSetMemoryOffset()
	1.9.18 RFM2gGetSlidingWindow()
	1.9.19 RFM2gSetSlidingWindow()

	2 • rfm2g_util.c Utility Program
	2.1 Introduction
	2.2 RFM2g Command Line Interpreter
	2.2.1 Using the Command Line Interpreter
	2.2.2 Command Line Interpreter Example

	2.3 Utility Commands
	2.3.1 boardid
	2.3.2 cancelwait
	2.3.3 checkring
	2.3.4 clearevent
	2.3.5 cleareventcount
	2.3.6 clearowndata
	2.3.7 config
	2.3.8 devname
	2.3.9 disableevent
	2.3.10 disablecallback
	2.3.11 dllversion
	2.3.12 driverversion
	2.3.13 drvspecific
	2.3.14 dump
	2.3.15 enableevent
	2.3.16 enablecallback
	2.3.17 errormsg
	2.3.18 exit
	2.3.19 first
	2.3.20 getdarkondark
	2.3.21 getdebug
	2.3.22 getdmabyteswap
	2.3.23 geteventcount
	2.3.24 getled
	2.3.25 getmemoryoffset
	2.3.26 getloopback
	2.3.27 getparityenable
	2.3.28 getpiobyteswap
	2.3.29 getslidingwindow
	2.3.30 getthreshold
	2.3.31 gettransmit
	2.3.32 help
	2.3.33 mapuser
	2.3.34 mapuserbytes
	2.3.35 memop
	2.3.36 nodeid
	2.3.37 peek8, peek16, peek32 and peek64
	2.3.38 performancetest
	2.3.39 poke8, poke16, poke32 and poke64
	2.3.40 quit
	2.3.41 read
	2.3.42 repeat
	2.3.43 return
	2.3.44 send
	2.3.45 setdarkondark
	2.3.46 setdebug
	2.3.47 setdmabyteswap
	2.3.48 setled
	2.3.49 setloopback
	2.3.50 setmemoryoffset
	2.3.51 setparityenable
	2.3.52 setpiobyteswap
	2.3.53 setslidingwindow
	2.3.54 setthreshold
	2.3.55 settransmit
	2.3.56 size
	2.3.57 unmapuser
	2.3.58 unmapuserbytes
	2.3.59 wait
	2.3.60 write

	2.4 Troubleshooting the rfm2g_util.c Command Line Interpreter
	2.4.1 Errors

	3 • RFM2g Sample Applications
	3.1 rfm2g_sender.c
	3.2 rfm2g_receiver.c
	3.3 rfm2g_map.c
	3.4 rfm2g_sender.c and rfm2g_receiver.c Example Workflow
	3.5 rfm2g_map.c Example Workflow

	Maintenance

