
[Type text]

Software User’s Manual
CEI-x30-SW

Copyrights

User’s Manual Copyright © 2004 -2017 Abaco Systems, Inc.

This software product is copyrighted and all rights are reserved. The distribution and sale of this product are
intended for the use of the original purchaser only per the terms of the License Agreement.

Confidential Information - This document contains Confidential/Proprietary Information of Abaco Systems,
Inc. and/or its suppliers or vendors. Distribution or reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS", WITH NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL
OTHER LIABILITY ARISING FROM RELIANCE ON ANY INFORMATION CONTAINED HEREIN IS
EXPRESSLY DISCLAIMED.

Microsoft is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
VxWorks is a registered trademark of WindRiver Systems Corporation.
INTEGRITY is a registered trademark of Green Hills Software Incorporated.
LabVIEW is a registered trademark of National Instruments Corporation.

Abaco Systems, Inc. acknowledges the trademarks of other organizations for their respective products or
services mentioned in this document.

CEI-x30-SW Software User’s Manual (1500-048)

Software Revision: 5.00
Document Revision: 5.00
Document Date: 8 December 2017

Abaco Systems, Inc.
26 Castilian Drive, Suite B
Goleta, CA 93117
Main +1 805-965-8000 or +1 877-429-1553
Support +1 805-883-6097

support@abaco.com (email)

https://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:support@abaco.com
https://www.abaco.com/products/avionics
http://www.abaco.com/

CEI-x30-SW Software User's Manual i

Contents and Tables

Contents

Chapter 1 The CEI-x30 ARINC Product Line 1

Overview .. 1

Common Features .. 2

Multiprotocol Boards .. 2

Operating Systems Supported ... 4

Summary .. 4

Chapter 2 Windows Installation 5

Software Installation under Windows ... 5

Hardware Installation .. 6

Device Driver Installation under Windows ... 6

Installation Verification ... 7

Chapter 3 VxWorks Installation 8

Overview .. 8

Building a VxWorks Image ... 8

Using the Sample Program .. 13

Building the API and Sample Program with Workbench 13

Target-specific Compiler Directives ... 16

Chapter 4 Linux Installation ... 19

Overview .. 19

Software Installation .. 19

Building Applications.. 20

Automatic Installation (Builds LSP and API) 20

Manual Installation .. 21

Linux Driver Operation ... 21

Troubleshooting ... 22

Useful Linux system utilities ... 22

Compilation Errors ... 23

CEI-x30-SW Software User's Manual ii

Run-time Errors .. 23

Chapter 5 INTEGRITY® Support 24

Introduction .. 24

INTEGRITY Installation ... 24

INTEGRITY PCI Driver Installation .. 25

Building the CEI-x30 API with Multi ... 25

Building INTEGRITY Applications ... 28

Chapter 6 BusTools/ARINC™ Data Bus Analyzer.......... 31

General Information .. 31

BusTools/ARINC Demo Software ... 31

Chapter 7 Application Development 32

Overview .. 32

Windows Libraries .. 32

Data Types, Constants, and API Routine Prototypes 33

Time-tag Structure Definition ... 33

Setting the Device Time... 34

Return Status Values ... 35

Programming with the CEI-x30 API Interface ... 36

Example Routines in C – Summary .. 37

Tst_cnfg.c ... 38

Config_from_file.c ... 39

Multiprocess_test.c .. 39

C# Support ... 40

C# Managed Wrapper Functions ... 42

Visual Basic and VB.NET Support .. 44

Working with Unsigned Integers in Visual Basic 45

AutoConfig ARINC Configuration File Generator 45

Dealing with Complex Message Scheduler Transmit Scenarios 46

Chapter 8 Application Programming Interface 47

Overview .. 47

CEI-x30 API Source Files ... 47

CEI-x30 API Header Files... 50

Building the API for Embedded and Certified Systems 52

Defining Custom Content in Your API Build 52

Defining the Data Types Used in Your API Build 55

API Data Types ... 56

API Routines - Summary ... 57

Initialization and Control Routines.. 57

CEI-x30-SW Software User's Manual iii

Device Control Routines .. 57

Termination Routines .. 57

Receive/Transmit Channel-level Configuration Routines 57

Device-level Configuration Routines .. 58

Receive Data Processing Routines .. 59

Transmit Data Processing Routines... 60

Timer-related Routines .. 61

Information and Status Routines ... 61

Utility Routines .. 61

AR_ASSIGN_SCHEDULER_START_OFFSETS 63

AR_BOARD_TEST .. 64

AR_BYPASS_WRAP_TEST ... 65

AR_CLR_RX_COUNT .. 66

AR_CLOSE ... 67

AR_CHANNEL_CONFIGURATION_FROM_XML_FILE 68

AR_CONFIG_CHANNEL_FROM_TXT_FILE 69

AR_CONVERT_1553_TIME_TO_STRING .. 70

AR_CONVERT_TIME_TO_STRING .. 71

AR_DEFINE_MESSAGES_FROM_TXT_FILE 72

AR_DEFINE_MESSAGES_FROM_XML_FILE 73

AR_DEFINE_MSG ... 74

AR_DEFINE_MSG_BLOCK ... 75

AR_ENH_LABEL_FILTER .. 77

Label Filtering .. 77

Interrupt Generation ... 77

AR_EXECUTE_BIT ... 79

AR_GET_573_FRAME .. 81

AR_GET_429_MESSAGE ... 83

AR_GET_BASE_ADDR .. 85

AR_GETBLOCK .. 86

AR_GETBLOCK_T ... 88

AR_GET_BOARDNAME.. 90

AR_GET_BOARDTYPE ... 91

AR_GET_CHANNEL_INDEX_INFO .. 92

AR_GET_CONFIG ... 94

AR_GET_DATA... 98

AR_GET_DATA_XT ... 100

AR_GET_DEVICE_CONFIG .. 102

AR_GET_573_CONFIG ... 110

AR_GET_ERROR .. 113

AR_GETFILTER .. 114

AR_GET_LABEL_FILTER ... 116

AR_GET_LATEST ... 117

CEI-x30-SW Software User's Manual iv

AR_GET_LATEST_T .. 118

AR_GETNEXT ... 119

AR_GETNEXTT .. 120

AR_GETNEXT_XT ... 122

AR_GET_RX_CHANNEL_STATUS ... 124

AR_GET_RX_COUNT .. 126

AR_GET_SNAP_DATA .. 127

AR_GET_STATUS .. 128

AR_GET_STORAGE_MODE ... 129

AR_GET_TIME .. 130

AR_GET_TIMERCNTL .. 132

AR_GETWORD ... 133

AR_GETWORDT ... 135

AR_GETWORD_XT .. 137

AR_GO .. 139

AR_HW_INTERRUPT_BUFFER_READ .. 140

AR_INTERRUPT_QUEUE_READ .. 141

AR_INITIALIZE_API .. 142

AR_INITIALIZE_DEVICE .. 144

AR_HW_INTERRUPT_BUFFER_READ .. 145

AR_INTERRUPT_QUEUE_READ .. 146

AR_LABEL_FILTER ... 147

AR_LOADSLV ... 148

AR_MODIFY_MSG ... 150

AR_MODIFY_MSG_BLOCK ... 152

AR_NUM_RCHANS .. 154

AR_NUM_XCHANS ... 155

AR_OPEN ... 156

AR_PUT_429_MESSAGE ... 158

AR_PUT_573_FRAME .. 159

AR_PUTBLOCK .. 160

AR_PUTBLOCK_MULTI_CHAN .. 161

AR_PUTFILTER .. 163

AR_PUTWORD .. 165

AR_QUERY_DEVICE ... 166

AR_READ_SCHEDULED_MSG_BLOCK .. 168

AR_RESET ... 170

AR_RESET_TIMERCNT .. 171

AR_SET_CONFIG ... 172

AR_SET_DEVICE_CONFIG .. 177

AR_SET_573_CONFIG ... 183

AR_SET_MULTITHREAD_PROTECT ... 186

AR_SET_ISR_FUNCTION .. 187

CEI-x30-SW Software User's Manual v

AR_SET_ PRELOAD_CONFIG .. 188

AR_SET_RAW_MODE ... 190

AR_SET_ STORAGE_MODE ... 192

AR_SET_TIME ... 193

AR_SLEEP .. 195

AR_SET_TIMERRATE ... 196

AR_STOP .. 197

AR_UPDATE_MSG_BLOCK ... 198

AR_VERSION .. 199

AR_WAIT ... 200

AR_XMIT_SYNC... 201

Figures
Figure 1. Linux Installation Directory Structure .. 20

Figure 2. Integrity PCI Driver Installation .. 25

Figure 3. Example CEI-x30 Integrity API Library Project Setup 27

Figure 4. Example CEI-x30 Integrity Library Project Options 28

Figure 5. Example CEI-x30 Integrity Application Project Setup 28

Figure 6. Example CEI-x30 INTEGRITY Application Project Option 29

Figure 7. Adding a MemoryPoolSize Entry ... 29

Figure 8. Modifying the Value for the DefaultStartIt Attribute 30

Tables
Table 1. CEI-x30 ARINC Products .. 1

Table 2. VxWorks PCI Driver Component Definition Files 11

Table 3. CEI-x30 API C Source File Content for a Custom Build 55

Table 4. CEI-x30 API C Data Type Definitions ... 56

CEI-x30-SW Software User's Manual 1

CHAPTER 1

The CEI-x30 ARINC Product Line

Overview

The CEI-x30 ARINC Product Line is a multiple-channel ARINC interface

design available in several form factors and channel configurations

supporting ARINC 429, ARINC 573/717, Avionics Discrete I/O, and IRIG

time synchronization.

Products included in the CEI-x30 ARINC Product Line are listed with

their channel configurations and available/optional features in the

following table:

Table 1. CEI-x30 ARINC Products

Product
Name

Form Factor ARINC 429 Maximum
Channel Count

Available/Optional
Features

RCEI-530 PCI
16 Receivers

16 Transmitters

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

16 Discrete Inputs

16 Discrete Outputs

RAR-PCIE PCI Express
16 Receivers

16 Transmitters

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

16 Discrete Inputs

16 Discrete Outputs

RAR-MPCIE
Mini PCI
Express

8 Receivers

4 Transmitters

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

4 Bidirectional Discrete
Input/Output

RAR-CPCI Compact PCI
16 Receivers

16 Transmitters

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

16 Bidirectional Discrete
Input/Output

RAR-XMC XMC

16 Fixed Receivers plus

16 Channels either Fixed
Transmit or Receive, or
Programmable
Transmit/Receive

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

4 Discrete Inputs

4 Discrete Outputs

The CEI-x30 ARINC Product Line Common Features

CEI-x30-SW Software User's Manual 2

Product
Name

Form Factor ARINC 429 Maximum
Channel Count

Available/Optional
Features

RAR-EC ExpressCard
7 Receivers

4 Transmitters

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

4 Bidirectional Discrete
Input/Output

CEI-830

RCEI-830A
PMC

16 Receivers

16 Transmitters

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

4 Discrete Inputs

4 Discrete Outputs

R830RX PMC 32 Receivers IRIG Timecode Rx/Tx

CEI-430 PC/104-Plus
12 Receivers

12 Transmitters

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

16 Bidirectional Discrete
Input/Output

RCEI-430A PC/104-Plus
24 Receivers

4 Transmitters

ARINC 573/717 Rx/Tx
IRIG Timecode Rx/Tx

16 Bidirectional Discrete
Input/Output

AMC-A30 AMC
12 Receivers

12 Transmitters

IRIG Timecode Rx/Tx

4 Bidirectional Discrete
Input/Output

RCEI-830X820 PMC
8 Receivers

8 Transmitters
None

For the CEI-830, RCEI-830A, RCEI-830X820, and R830RX PMC

products, a variety of bus adapter configurations are also available,

supporting both front and rear-I/O access for PCI, PCI Express, and

CompactPCI platforms. For the RAR-XMC and RAR-MPCIE products,

PCI Express bus adapters are available.

Common Features

The CEI-x30 ARINC Product Line incorporates a common firmware

design across all products. Features available on most CEI-x30 products

include the following, with IRIG optional on many products.

General Features

 64-bit 1 microsecond resolution on-board timer

 Fixed ARINC 429 Receive Threshold Levels

 IRIG-B reception supporting AM or DC/TTL input

 IRIG-B generator supporting DC/TTL output

ARINC 429 Transmit Features

 Fixed transmit signal levels

The CEI-x30 ARINC Product Line Multiprotocol Boards

CEI-x30-SW Software User's Manual 3

 Individually programmable channel configuration attributes:

• transmit bit rate

• slew rate

• automatic parity generation

• message bit count and gap error injection

 Individual 2048 message aperiodic transmit buffer for each channel

 2048 entry message scheduler table supporting high accuracy

periodic message transmission for all channels (exception of a 1024

entry limit on the CEI-830)

 1 millisecond periodic message scheduler transmission accuracy

ARINC 429 Receive Features

 Fixed receive threshold levels

 Message label filtering/triggering and PCI event/interrupt generation

 64-bit message time-stamp with a 1 microsecond resolution

 Individually programmable channel configuration attributes:

• receive bit rate

• parity detection

• message length/gap error detection

 Multiple message buffering schemes:

• Individual 2048 message circular buffer for each channel

• 16384 message merged mode receive buffer with individual

receive channel merged buffer selection

• Independent label/SDI field value-based snapshot storage

Multiprotocol Boards

The CEI-x30 ARINC common firmware design is also included in the

RAR15X and RAR15-XMC–IT multiprotocol product configurations,

supporting both MIL-STD-1553 and ARINC 429. While not formally

considered part of the CEI-x30 ARINC product line, the respective

software distribution CEI-x30-SW supports any of the Abaco Systems

multiprotocol boards in which the CEI-x30 common firmware design is

provided.

The CEI-x30 ARINC Product Line Operating Systems Supported

CEI-x30-SW Software User's Manual 4

Operating Systems Supported

The CEI-x30-SW software distribution supports the following products on

a range of operating systems, with installation instructions provided in

individual chapters of this manual:

 32-bit and 64-bit Windows 10, 8.1, 8, 7, Server 2012 and 2008, Vista

and XP – all products

 32-bit and 64-bit Linux – all products

 VxWorks 6.x – CEI-830, RCEI-830A, R830RX, CEI-430, RCEI-

430A, RCEI-530, RCEI-830X820, RAR-XMC, RAR15-XMC, RAR-

MCPIE

 Integrity 5.10 and 5.11 – CEI-830, RCEI-830A, RAR-XMC, RAR15-

XMC

Summary

Each board in the CEI-x30 ARINC Product Line is described in detail in

the CEI-x30 Product Line Hardware User’s Manual. For information

regarding the CEI-x30-SW distribution and application programmer’s

interface, see the chapter in this manual titled “Application Programming

Interface”.

CEI-x30-SW Software User's Manual 5

CHAPTER 2

Windows Installation

Software Installation under Windows

Although system resources may limit the number of boards installed on a

system, the CEI-x30-SW distribution supports up to 128 devices when

installed under 32-bit and 64-bit versions of the Windows 10, 8.1, 8, 7,

Vista, XP, and Server 2008/2012 operating systems.

Prior to physically installing the CEI-x30 product, the CEI-x30-SW

software distribution should be installed on your host computer. Failure to

properly install the software prior to the hardware may result in corruption

of the Windows Device Manager Registry settings and require restoration

to a previous configuration.

To install the software, follow these steps:

1. Exit all programs.

1. Insert the CEI-x30-SW CD into your CD drive.

2. If the installation does not automatically start after 10 seconds:

• Click Start from the Windows Task Bar and select Run.

• Use the Browse button to locate the Setup.exe file in the

Setup\Disk1 folder.

• Double-click the file setup.exe. Then, click OK to launch the

setup program.

3. Follow the on-screen instructions for the installation.

4. Note which device number is allocated during the installation.

5. Following successful completion of the installation, turn off the

computer.

Windows Installation Hardware Installation

CEI-x30-SW Software User's Manual 6

Hardware Installation

Once the software has been successfully installed, follow these steps to

install the hardware and Windows device driver:

With the computer powered off, install the CEI-x30 board into any

available slot, PMC/XMC site, or PC/104-Plus stack location. The CEI-

430 and RCEI-430A require card jumpers to agree with the installed stack

location. Refer to the PCI Interface description in either chapter “CEI-

430” or “CEI-430A” of the CEI-x30 Product Line Hardware User Manual

for the applicable jumper settings.

Device Driver Installation under Windows

To install the hardware under all supported Windows operating systems,

follow these steps:

1. Power-up the PC.

With Windows 10, 8.1, 8, 7 and Server 2008/2012, device installation

should occur automatically; for other Windows versions, the Windows

Plug and Play hardware manager should detect the CEI-x30 device,

and the Found New Hardware dialog box may automatically startup.

Decline any request to query the Microsoft web site to obtain drivers

for this device.

• For Windows XP, select the Install the software automatically

option and click Next. Under the Completing the Found New

Hardware dialog, click Finish.

• For Windows Vista, select the Locate and install driver software

(recommended) option and click Next. Under the Completing the

Found New Hardware dialog, click Finish.

6. If Windows does not detect the new hardware, you must manually

install the device driver:

• Click Start and point to Settings.

• Select the Control Panel.

• Select Add New Hardware.

7. If the device drivers are not automatically detected and you are

prompted for a path to the driver location, enter the full path to the

distribution driver folder located beneath

C:\Program Files\Condor Engineering\CEI-x30-SW\Drivers

and click OK.

8. To check for proper driver installation, open the Device Manager as

follows:

Windows Installation Hardware Installation

CEI-x30-SW Software User's Manual 7

• Under Windows 7, Vista, XP and Server 2008, use the “Start ->

Run” command prompt, enter “devmgmt.msc” to open the

Windows Device Manager.

• Under Windows 10, 8.1, 8 and Server 2012, open the “Run”

application and enter “devmgmt.msc” to open the Windows

Device Manager.

• Expand the Abaco Avionics Devices folder.

9. Verify the device entry Product Name for your device is shown with

no exclamation point overlaying the icon. If this is true, the device

driver was properly installed. You have completed installation of the

hardware.

Installation Verification

To verify the device driver is properly installed, execute the Test

Configuration program.

1. Under Windows 7, Vista, XP and Server 2008

a.Click Start, then Programs.

b.Find and expand the Abaco CEI-x30-SW program group

c.Invoke the CEI-x30 Test Installation shortcut located therein.

2. Under Windows 8, 8.1 and Server 2012

a. Display “Apps by name”.

b. Find and invoke the CEI-x30 Test Installation shortcut.

3. Under Windows 10 and Server 10

a. Expand “All apps”.

b. Scroll down and expand the Abaco CEI-x30-SW application

group.

c. Invoke the CEI-x30 Test Installation shortcut beneath.

This program executes an internal wrap test on all available channels and

notifies you of success or failure. If the program reports success on all

channels tested, you are ready to use your new board.

CEI-x30-SW Software User's Manual 8

CHAPTER 3

VxWorks Installation

Overview

VxWorks is an embedded real-time operating system supporting flexible

hardware configurations. The CEI-x30-SW API source compiles and runs

under the PowerPC and x86 VxWorks Board Support Packages.

The CEI-x30-SW API supports up to sixteen boards on a single VxWorks

host, using device numbers 0-15 to designate the device on which to

operate. VxWorks assigns the device numbers based on the order it

encounters the devices on the bus. The first device is device 0, the next

device is 1, and so on. If you have only a single board in your system, it is

always device 0. Use this value when programming a board using the

supplied API.

To use the CEI-x30-SW API with VxWorks you must first build a

VxWorks image supporting the desired board configuration. Upon boot of

this image, you may download and execute the client application. These

basic steps are described in this chapter.

Building a VxWorks Image

To incorporate your CEI-x30-SW API source with VxWorks you must

rebuild your VxWorks image. The procedure provided for including the

CEI-x30-SW API and common avionics driver in your VxWorks image

utilizes the VxWorks Component Installation method, and applies to both

Tornado and Workbench development environments. Since these methods

differ greatly, these instructions are written in a generic fashion and must

be interpreted for your environment.

In addition to these general instructions are specific dependencies on the

use of the VxBus Gen1 and Gen2 device drivers with your target processor

and BSP, also described below.

VxWorks Installation Building a VxWorks Image

CEI-x30-SW Software User's Manual 9

VxBus Gen 1 Driver Support (VxWorks 6.8 and 6.9)

1. To install the generic Abaco Avionics common VxBus Gen 1 driver

support for VxWorks 6.x, copy the file 40avioVxwDrv.cdf from the

Component Installation File folder beneath:

/Program Files/Condor Engineering/CEI-x30-SW/Source/VxWorks/VxBus Gen1 Driver

To

 [Workbench_directory_path]/target/config/comps/vxWorks

2. Copy the following source and header files from the folder:

/Program Files/Condor Engineering/CEI-x30-SW/Source/VxWorks/VxBus Gen1 Driver

to either folder

[Workbench_directory_path]/target/config/<BSP Folder> or

[Workbench_directory_path]/target/config/comps/src:

avioVxwDrv.c

avioVxwDrv.h

Continue with Common Build Components below to build the CEI-x30

API. A sample Abaco Avionics common PPC VxBus Gen 1 Kernel

Configuration file setup is shown below:

VxBus Gen 2 Driver Support (VxWorks 7)

1. To install the generic Abaco Avionics common VxBus Gen2 driver

support for VxWorks 7, copy the entire folder abaco_avio (not just the

contents) from:

VxWorks Installation Building a VxWorks Image

CEI-x30-SW Software User's Manual 10

/Program Files/Condor Engineering/CEI-x30-SW/Source/VxWorks/VxBus Gen2 Driver

To

 [Workbench_directory_path]/VxWorks-7/pkgs

2. If you plan to create a new VxWorks 7 Source Build Project, once

installed the driver should be included in the build automatically;

however, if you are adding the Abaco Avionics driver to an existing

VxWorks 7 Source Build Project, you must perform the following

steps:

a. Double-click on your VSB Source Build Configuration entry to

refresh the project.

b. Expand the Build Targets selection

c. Expand the Layers selection

d. Right-click on the AVIO_1_0_0_2 layer and select Build Layer

e. The Abaco Systems VxBus Driver for Avionics Boards should

now be available for selection within any VxWorks 7 Image

Project based on this VSB.

3. A sample Abaco Avionics common VxWorks 7 x86 VxBus Gen2

Kernel Component Description File setup is shown below:

4. Right-click on the Abaco Systems VxBus Driver for Avionics Boards

entry and select Include.

5. Continue to Common Build Components to build the kernel image

with the VxBus Gen2 device driver.

6. If you prefer to build an RPM installer for this driver, the spec file

abaco_driver.spec is provided in the /VxWorks Driver/VxBus Gen2

Driver distribution folder.

VxWorks Installation Building a VxWorks Image

CEI-x30-SW Software User's Manual 11

Legacy PCI Driver Support

1. To build the generic legacy (non-VxBus) Abaco Avionics common

VxWorks PCI driver, copy the appropriate component installation file

as specified in the following table:

Kernel Version Platform Component Installation File

VxWorks
5.5

x86 51_GEIP_x86_55_PCI.cdf

PPC 51_GEIP_PPC_55_PCI.cdf

VxWorks
6.0 - 6.5

x86 51_GEIP_x86_RTP_6x_PCI.cdf

PPC 51_GEIP_PPC_RTP_6x_PCI.cdf

VxWorks 6.6 - 6.9

x86 51_GEIP_x86_RTP_66_PCI.cdf

PPC 51_GEIP_PPC_RTP_6x_PCI.cdf

 Table 2. VxWorks PCI Driver Component Definition Files

from the respective processor-specific folder in the VxWorks Legacy

PCI Driver/Component Installation File folder located beneath:

/Program Files/Condor Engineering/CEI-x30-SW/Source/VxWorks

To

[Workbench_directory_path]/target/config/comps/vxWorks

7. Copy the following source files from the VxWorks Legacy PCI Driver

folder beneath the folder:

/Program Files/Condor Engineering/CEI-x30-SW/Source/VxWorks

And the file cei_types.h from the distribution Include folder, to either

folder

[Workbench_directory_path]/target/config/<BSP Folder> or

[Workbench_directory_path]/target/config/comps/src:

CondorVxWRTPDrv.c

CondorVxWRTPDrv.h

gefes_ioctl.h

lowlevel.h

target_defines.h

Common Build Components

1. You may choose to include the CEI-x30-SW API source files in the

BSP kernel source folder, create a new project folder for the CEI-x30-

SW API and application development, or reference the distribution

installation Source and Include folders. If you are not using the

distribution folder, copy the following API source files from the folder

VxWorks Installation Building a VxWorks Image

CEI-x30-SW Software User's Manual 12

/Program Files/Condor Engineering/CEI-x30-SW/Source and

VxWorks folder beneath, to the folder of your choice:

cdev_api.c cdev_vxw.c

cdev_api_a717.c cdev_api_exp_rx.c

cdev_api_exp_tx.c cdev_api_intrpt.c

cdev_api_irig.c cdev_api_legacy_api.c

cdev_api_plx_pgm.c cdev_api_rx_filter.c

cdev_api_sched.c cdev_api_utility.c

See the section titled Defining Custom Content in Your API Build for a

discussion on how to customize the CEI-x30 API for your target

application. The use of selective API content can affect which source

files you include in the API build.

2. If you choose not to reference the Include folder in your compilation

Include Path, copy the following C header files from the folder

/Program Files/Condor Engineering/CEI-x30-SW/Include and driver

source folder to that same folder, with some files dependent on the

driver method used:

ar_error.h cdev_api.h cdev_fw.h

cdev_glb.h cdev_hw.h fpga430.h

fpga430A.h fpga530.h fpga630.h

fpga830.h fpga830a.h fpga830rx.h

fpga830x820.h fpga_ec.h fpgaA30.h

fpgax30n.h cei_types.h avioVxwDrv.h

target_defines.h

See the section titled CDEV_FW.H - Firmware Load Files for a

discussion on how to customize the specific firmware load files

included with the CEI-x30 API for your target application. The use of

selective firmware for your specific board can drastically affect the

size of static data allocation in your API build.

3. Open the workspace containing your VxWorks target image project,

and access the Kernel Configuration setup for the VxWorks image.

4. Beneath the hardware component, right-click the “Abaco Systems

VxBus Driver for Avionics Boards” (or “Abaco Systems PCI Avionics

Products”) component and select Include (quick include).

5. Modify the default values for any definitions as required for your

target system. Examples of such modifications for the legacy PCI

driver include:

• For x86/Pentium kernel images, change the default state of

“Define PCI Compile for PowerPC” to FALSE.

• To modify the maximum number of overall Abaco Avionics

boards supported in a system using the legacy PCI driver, change

VxWorks Installation Using the Sample Program

CEI-x30-SW Software User's Manual 13

the value of “Defines the maximum number of devices” to the

desired number, up to a maximum number of 16.

6. If you choose to build the API outside of the BSP source folder, you

will have to manually define the directive VXW_PCI_X86 for an

x86/Pentium target C source compilation/build or the directive

VXW_PCI_PPC for a PowerPC target C source compilation/build,

(normally defined in the configuration definition file).

7. Once you have your VxWorks kernel image built and running on your

target with your board installed, open a shell to the target and invoke

the function avioDeviceShow. This routine lists all detected Abaco

Avionics products in the discovered “Device ID” order that should be

referenced from your application for the respective boards.

See the section, “Target-specific Compiler Directives” for more

information on the various ways to customize the CEI-x30-SW API source

code compilation for your target BSP.

Using the Sample Program

The CEI-x30-SW API distribution includes an example program named

TST_CNFG.C. The source code is located within the Windows

distribution Source folder or on the distribution disk in the CEI-x30-

SW/Source folder. You can use this program to test your VxWorks

installation, as it simply executes an internal wrap on all receiver-

transmitter channel pairs. You can also use TST_CNFG.C as a guide for

programming with the CEI-x30-SW API.

Building the API and Sample Program with Workbench

The CEI-x30-SW API and sample program can be built in the image, or as

a downloadable object. The following steps explain how to build the API

and sample program together as a downloadable object with Workbench 3

for a VxWorks 6.9 PowerPC target supporting the VxBus Gen1 driver, but

can be easily adapted to Workbench 4/VxWorks 7 or Tornado/VxWorks

5.5, as well as other build environments.

1. From the File pulldown, select New->Wind River Workbench

Project… to initiate a new project for your downloadable application.

Specify your target operating system, then select Next.

VxWorks Installation Building the API and Sample Program with Workbench

CEI-x30-SW Software User's Manual 14

2. For initial testing of the board installation, select the build type

“Downloadable Kernel Module”. Click Next.

3. Enter your project name. “CEI-x30_ARINC_429” was used for this

example. Click Finish.

4. Right-click the new project and select Properties.

5. Click on Build Properties and select the Paths tab.

6. Add paths to the CEI-x30-SW distribution’s Include and VxBus

folders, then click on Apply.

VxWorks Installation Building the API and Sample Program with Workbench

CEI-x30-SW Software User's Manual 15

7. Click on the Defines tab, and add defines for VXW_PCI_PPC and

VXW_VXB_DRIVER. Click on Apply, then OK.

8. Open a view of the CEI-x30-SW/Source folder the Windows Explorer.

Drag the files cdev_api.c, cdev_vxw.c, and tst_cnfg.c to the top level

project, so they are included as follows:

VxWorks Installation Target-specific Compiler Directives

CEI-x30-SW Software User's Manual 16

9. Right-click the build specification and select Build Project.

10. Assuming you have already connected to the target via target server, in

the expanded project under the Project Explorer right-click on the

Wind River Launches item and select Download->VxWorks

Kernel Task to download the build file you created.

11. Open a host shell to the target and invoke the application by typing

wrap at the shell prompt.

This program executes an internal wrap test on all available channels

and notifies you of success or failure. If the program reports success

on all channels tested, you are ready to use your new board.

Target-specific Compiler Directives

The CEI-x30 API accounts for specific target requirements using

compilation directives. There are a few directives that may be required for

the board-specific VxWorks support provided with your target. Two

alternatives to the standard taskDelay method to pause execution are

provided for select board support packages, sysUsDelay and sysMsDelay.

In addition to VxBus support, there are also differing methods for Legacy

PCIbus driver mapping to a CEI-x30 board’s PCI memory regions,

sysMmuMapAdd, sysPciMemToLocalAdrs and sysBusToLocalAdrs. You

should determine the specific requirements for your target BSP and take

the appropriate action prior to building the CEI-x30 API into your system.

The following table contains compiler directives that are defined to

include both general and specific features required for compiling for

various VxWorks target BSPs. The source of the directive may reside in

the component installation file or the include file target_defines.h, while

some are required to be defined in the build project.

VxWorks Installation Target-specific Compiler Directives

CEI-x30-SW Software User's Manual 17

Parameter Description Target Options

Common Avionics API and Driver Specific Parameters and Directives

VXW_VXB_DRIVER

When this directive is defined in the kernel image
build project, it designates the use of the
VxWorks VxBus device driver in place of the
legacy PCI driver.

Both VxBus drivers
for VxWorks 6.x
and VxWorks 7

N/A

VXW_PCI_PPC
When this directive is present or defined, it
designates the target processor architecture as
either PowerPC or x86.

All Kernel Versions
TRUE (PPC)
FALSE (x86)

VXW_PCI_X86
Used to enable x86 target processor specific
interrupt processing.

Legacy PCI driver
for VxWorks 5.5
and 6.x

TRUE (x86)

FALSE (N/A)

AVIO_DEBUG
Used to enable console printout of debug
information during driver initialization.

VxBus Gen1 driver
for VxWorks 6.7
through 6.9

TRUE

FALSE
(default)

vxwdebug
Used to enable console printout of debug
information during driver initialization.

Legacy PCI driver
for VxWorks 5.5
and 6.x

TRUE

FALSE
(default)

VXW_X86_MAP_ADD

Adds the board’s PCI memory to
sysPhysMemDesc via invocation of
sysMmuMapAdd. Optional for an x86 target
processor

Legacy PCI driver
for VxWorks 5.5
and 6.0 to 6.5

TRUE

FALSE
(default)

SPIN_LOCK_PROTECT

When this directive is present or defined TRUE,
the respective driver includes spinlock atomic
access protection in interrupt service routine
processing.

VxBus driver and
Legacy PCI driver
for VxWorks 5.5
6.x and 7

TRUE

FALSE
(default)

IRQ_OFFSET

This directive is defined in the respective CDF
file for the Legacy PCI driver, and is a value
added to the base IRQ Offset value ‘0’ to
represent the value of interrupt vector assigned
to the Avionics board, typically used in an
invocation of pciIntConnect or intConnect both
with and without use of the macro
INUM_TO_IVEC.

Legacy PCI driver
for VxWorks 5.5
and 6.x

Refer to your
target BSP
documentation

0 (default)

CEI-x30 API Specific Parameters and Directives

FLASH_BASED_TARGET

This directive is intended for use when building
for the RAR-XMC, RAR-PCIE, RAR-MPCIE and
RAR15-XMC products. When defined the API
build excludes the firmware load modules and
PLX programming routines for the PCI products.

All Kernel Versions N/A

NON_INTEL_WORD_ORDER

This directive is intended for use when building
for a Big Endian mapped target (typical for
PowerPC and usually handled via
target_defines.h).

All Kernel Versions N/A

DELAY_USE_SYS_US_DELAY

This directive is intended for use when a delay
should be implemented with sysUsDelay instead
of taskDelay (applies to some Thales VMPC*
targets).

VxWorks 5.5 N/A

DELAY_USE_SYS_MS_DELAY

This directive is intended for use when a delay
should be implemented with sysMsDelay instead
of taskDelay (applies to some Motorola MCP*
targets).

VxWorks 5.5 N/A

INT_PROCESS_USE_IRQ_VALUE

When this directive is present or defined TRUE,
the interrupt connect method pciIntConnect is
used in place of intConnect with PowerPC target
processors.

Legacy PCI driver
for VxWorks 5.5
and 6.x

N/A

INT_PROCESS_USE_INT_LEVEL This directive defines interrupt processing based Legacy PCI driver N/A

VxWorks Installation Target-specific Compiler Directives

CEI-x30-SW Software User's Manual 18

Parameter Description Target Options

on a computed interrupt level instead of the IRQ
assigned to the board, defined via invocation of
intConnect. The default interrupt level 1 value is
25.

for VxWorks 5.5
and 6.x

INT_PROCESS_INT_LEVEL_IS_IRQ_VALUE

This directive defines interrupt processing based
on an interrupt level that is the IRQ value, and
can be offset by the value IRQ_OFFSET as
defined in the CDF file.

Legacy PCI driver
for VxWorks 5.5
and 6.x

N/A

INT_TERM_INCL_CTL_DISCONNECT

When this directive is present or defined TRUE,
interrupts are terminate by invoking
intCtrlDisconnect in addition to intDisable.

Legacy PCI driver
for VxWorks 5.5
and 6.x

N/A

CEI-x30-SW Software User's Manual 19

CHAPTER 4

Linux Installation

Overview

CEI-x30-SW provides support for all CEI-x30 products under most Linux

Kernel 2.4, 2.6, 3.x, and 4.x revisions. The install process builds the API

as a shared library and installs the driver as a module. Application

programs link with the shared library to access the respective device. Up

to eight boards can be installed under supported Linux distributions.

Refer to the files Linux_support.txt and Linux_install.txt located in the

Linux distribution file for the latest information on installing and building

the common driver along with the CEI-x30 API and example program.

Software Installation

The Linux installation process requires your CEI-x30 hardware be

installed prior to execution of the installation:

1. Turn OFF your computer system.

2. Ground yourself before handling the board. All hardware devices are

static sensitive.

3. Insert the board into any respective slot for your form-factor. If

possible, secure it in place.

Install the software as follows:

1. You must log on as "root" (you may use "su")

2. Copy the Linux distribution compressed tar file (linux_x30_vnnn.tgz)

to the /root directory.

3. Uncompress and extract the installation file using the following:

 tar -zxvf linux_x30_vnnn.tgz

Linux Installation Building Applications

CEI-x30-SW Software User's Manual 20

After the tarball extraction completes, the directory structure as shown in

Figure 1 will be created:

Figure 1. Linux Installation Directory Structure

Building Applications

Automatic Installation (Builds LSP and API)

Navigate to the Install directory and run the installation script by typing

 ./install

The PCI device driver builds and loads if the installation script detects a

Abaco Systems avionics PCI board in the "procfs" file system. If the

system does not have a "proc" file system, perform a manual install of the

device driver.

These are the configuration arguments that are accepted by the "install"

script:

1. To remove support for SYSFS (the SYS file system), include

"no_sysfs" in the "./install" command line. If the system does not have

the SYS file system or is based on kernel 2.6.10+ and does not agree

with the "Proprietary/GPL" license, then SYSFS support must be

removed.

2. To debug the kernel device driver(s), include the option

"debug_drv=<DEBUG LEVEL>" in the "./install" command line. The

debug statements will be printed out to the kernel message log. The

<DEBUG LEVEL> provides increasing debug information with a

range of "0" (none) to "3" (all).

3. To debug the low level library, include "debug_ll" in the "./install"

command line. The debug statements will be printed to stdout.

Linux Installation Linux Driver Operation

CEI-x30-SW Software User's Manual 21

4. To build only the device drivers and libraries, include "no_install" in

the "./install" command line. If support for SYSFS has been removed,

the "ceidev.conf" will not be generated. Need to follow the

instructions that are displayed on the screen during the installation.

Refer to Linux_install.txt in your distribution, sub-section 4 in the

section "Manual Install" concerning the "ceidev.conf" file.

5. To build the low-level and API libraries as 32-bit libraries to run in 32-

bit emulation mode for 64-bit systems, include "32bit" in the "./install"

command line.

6. To disable hardware interrupt support in the kernel 2.6 PCI/ISA

drivers, include "no_hwint" in the "./install" command line.

7. To disable using POSIX RT signals in the kernel 2.6 PCI/ISA drivers,

include "no_hwint_signal" in the "./install" command line.

8. To disable using a "wait queue" for the kernel 2.6/3.x/4.x PCI driver,

include "no_hwint_waitqueue" in the "./install" command line.

The installation is finished. Check the "install" script output and the

kernel message log for any errors. If there are no errors then the device

driver(s) are loaded into the kernel, the low-level library is built as well as

all detected API(s) distributions.

The installation installs the driver, builds and installs the API, (including

the Linux common low-level interface), and compiles the example

program. To test the installation, navigate to the Examples directory and

execute the tst_cnfg application.

Manual Installation

Refer to the file Linux_install.txt in your distribution, section "Manual

Install" concerning the manual installation of the Linux distribution and/or

driver.

Linux Driver Operation

Linux compiles drivers as modules that dynamically link with the Linux

kernel. The installation script automatically compiles the correct driver for

the boards you are installing and the Linux kernel version. You can

recompile using one of the Make files in the /Drivers/kernel/pci directory,

where kernel is either 2.4, 2.6 or 3.0. The module installation script

load_pci is supplied in the Driver folder, which loads the module. You

can manually load the driver by typing ”./load_pci”, and unload the driver

by typing “./unload_pci”.

Installation automatically invokes the driver load script. However, if you

reboot the system you need to re-execute this script. You can put the script

Linux Installation Compiler Directives and Build Features

CEI-x30-SW Software User's Manual 22

in the rc.local initialization file, which should automatically execute on

power-up. The installation instructions located in the distribution file

Linux_Install.txt explain how to manually execute the script.

Compiler Directives and Build Features

The following compiler directives should be used when building the CEI-

x30 API for your target (when you are not using the supplied makefile):

 MULTI_PROCESS_SUPPORT should be defined for any

application that will utilize multiple processes with a single board.

 _LINUX_PPC_ selects the target compilation for a PowerPC host

in the API source files.

 _LINUX_X86_ selects the target compilation for an Intel host in the

API source files.

When building the API for single process applications, thread protection is

implemented using POSIX mutex functionality.

When building the API for multiple process applications, a System V

global memory block is created to share API global status and control

structures between processes and thread protection is implemented using

semaphore functionality.

Troubleshooting

When installing any API distribution, you will need to be logged on as

"root". Use the "su" command to gain "root" permissions. Root

permissions are necessary when building device drivers and loading the

modules into the kernel.

Useful Linux system utilities

dmesg: displays the kernel message log.

lsmod: displays the current modules loaded in the kernel.

lspci displays the PCI config space for all PCI devices

strace: displays the system calls that the driver or application calls.

ltrace: displays calls to the dynamic libraries that the application calls.

gdb: the GNU debugger.

modinfo: displays the module information for a driver.

Linux Installation Troubleshooting

CEI-x30-SW Software User's Manual 23

Compilation Errors

If there are compilation errors, check that the path to the kernel headers is

valid. If different than the default ("/lib/modules/<KERNEL>/build"),

include the path in the applicable driver's makefile by including a "-I" with

the path. If there are system calls that cannot be resolved, check the

"/proc/kallsyms" file to verify that they are compiled into the kernel.

Run-time Errors

Run-time error resolution may involve one or more of the following:

1. Check that the device driver, uceipci, is loaded with "lsmod".

2. Examine the kernel message log for error output from the device

driver uceipci. Use "dmesg" and/or look directed at the kernel

message log located in "/var/log/messages".

3. If there are version errors when loading the driver, the driver's version

string (magic) may not coincide with current running kernel. Use

"modinfo" to get the driver's magic number. Refer to the

"/usr/src/linux/makefile" and "/usr/src/linux/.config".

4. To determine where an error may be occurring in the application or

API libraries use "gdb". Make sure when compiling to provide the "-

g" to GCC.

5. If a device driver fails to unload with "modprobe", use "rmmod".

6. If loading the 2.6 or 3.x/4.x PCI device driver and receive errors

indicating missing symbols with "sysfs" in the symbol name, then

build the distribution without support for SYSFS.

CEI-x30-SW Software User's Manual 24

CHAPTER 5

Integrity® Support

Introduction

Green Hills Integrity® is a secure, high-reliability real-time operating

system (RTOS) intended for use in mission critical systems. The CEI-x30-

SW distribution supports multiple CEI-x30 devices with Integrity on

PowerPC and Intel processors, using the standard CEI-x30 API C source

files in conjunction with the supplied Integrity-specific driver interface and

additional kernel C source file set.

Integrity is flexible in how it builds the kernel and application software.

You can build a monolith containing the kernel, BSP, and application

software, or you can build a separate kernel/BSP and the application as a

Dynamic Download. This Integrity distribution supports either method.

This distribution provides the Integrity PCI driver source file, API source

files, and an example application source file. You must compile and link

the API to form a static library, which can then be linked with your

application to achieve support for your board.

Integrity Installation

There are two options for installing CEI-x30-SW support for use with

Integrity. If you are running the Multi IDE on a Windows system, you can

install the source code using the Windows installation and select the

Source installation only for VxWorks/Integrity option at the Target

Installation selection prompt. You can also copy the desired folders

directly from the Installation CD-ROM. The installation contains the

Abaco Systems Avionics Integrity PCI driver, the source code for the API

and driver interface, the example application source, and documentation.

After installing your board, you need to copy the PCI device driver source

file into the Integrity BSP project for your target systems and rebuild the

kernel. The Abaco Systems Avionics Integrity driver works with most

Integrity® Support Integrity Installation

CEI-x30-SW Software User's Manual 25

PowerPC and Intel BSPs. You can then build your own static library and

example application projects.

Integrity PCI Driver Installation

You must install the PCI device driver as part of the BSP project in the

default.gpj. The driver is a C file named cei_int_pci_drv.c that is BSP

independent. Add that file into the libbsp.gpj project. Figure 2 shows the

driver file installed in a Dy4 DMV181 project. To add the file, right-click

the libbsp.gpj line and select the Add File Into libbsp.gpj option.

Figure 2. Integrity PCI Driver Installation

Building the CEI-x30 API with Multi

The CEI-x30-SW distribution contains all of the source code required to

build a static CEI-x30 API library for use with your application. Build

your static library with the supplied source and include files via the

following procedure. The source files required are:

cdev_api.c cdev_int.c

cdev_api_a717.c cdev_api_exp_rx.c

cdev_api_exp_tx.c cdev_api_intrpt.c

cdev_api_irig.c cdev_api_legacy_api.c

cdev_api_plx_pgm.c cdev_api_rx_filter.c

cdev_api_sched.c cdev_api_utility.c

mem_integrity.c

See the section titled Defining Custom Content in Your API Build for a

discussion on how to customize the CEI-x30 API for your target

Integrity® Support Integrity Installation

CEI-x30-SW Software User's Manual 26

application. The use of selective API content can affect which source

files you include in the API build.

The following list shows the include files (.h) needed to build the CEI-x30

API library.

ar_error.h cdev_api.h cdev_fw.h

cdev_glb.h cdev_hw.h fpga830.h

fpga830a.h fpga630.h fpga530.h

fpga430.h fpga830rx.h fpgax30n.h

cei_types.h lowlevel.h lowlevel.h

target_defines.h

See the section titled CDEV_FW.H - Firmware Load Files for a

discussion on how to customize the specific firmware load files

included with the CEI-x30 API for your target application. The use of

selective firmware for your specific board can drastically affect the

size of static data allocation in your API build.

Compiler Directives

The following compiler directives should be used when building the CEI-

x30 API for your target:

 INTEGRITY_POSIX should be defined for any Integrity project

using POSIX support, which can be any build other than for an

Integrity 178B host.

 INTEGRITY_PCI_PPC selects the Integrity target compilation for

a PowerPC host in the API source files.

 INTEGRITY_PCI_X86 selects the Integrity target compilation for

an Intel host in the API source files.

 PPC_SYNC introduces a processor pipeline flush operation during

execution of the CEI-x30 API SRAM memory test, required if the

SRAM memory test fails when the API is built without this directed

defined.

 FLASH_BASED_TARGET intended for use when building for the

RAR-XMC and RAR15-XMC products, when defined the build

excludes the firmware load modules and PLX programming routines

for the PCI products.

Monolith Image versus Dynamic Download

During development, if building your application and CEI-x30 API

library as a separate virtual AddressSpace project to be deployed via

Dynamic Download, no further directives are required. The Integrity

dynamic loader will determine the virtual addresses of your CEI-x30

Integrity® Support Integrity Installation

CEI-x30-SW Software User's Manual 27

board memory regions at load time and pass those addresses to the

API during the open session resource acquisition process.

If you are building your application and/or CEI-x30 API library with

the kernel as a single image via Monolith Integrity Application

Project, the symbol GHS_KERNEL must be defined in the

compilation of the file mem_integrity.c.

The compiler define for NON_INTEL_WORD_ORDER is now provided

via the file TARGET_DEFINES.H.

CEI-x30 API Project Setup

Select a stand-alone project for your host architecture (generic PowerPC

or Intel) and select a processor option matching your system.

For Project Type, select Library (empty). You can then add the C source

files to the project and add the path to the include files. See Figure 3 for

a sample CEI-x30 Integrity API library project for a PowerPC host.

Figure 3. Example CEI-x30 Integrity API Library Project Setup

If you are building a library to run in a Monolith, you also need to define

the symbol GHS_KERNEL under Define Preprocessor Symbol. You can

name the output library to anything and use that library name to link with

your application(s).

Integrity® Support Integrity Installation

CEI-x30-SW Software User's Manual 28

Figure 4. Example CEI-x30 Integrity Library Project Options

Building Integrity Applications

Once the PCI device driver has been built as part of the kernel and the

CEI-x30 API static library build is complete, you are ready to build your

INTEGRITY application program.

Figure 5 below shows a typical Dynamic Download project using the CEI-

x30 API library.

Figure 5. Example CEI-x30 Integrity Application Project Setup

Build the application using the following steps:

1. Define the host processor-specific preprocessor symbol

INTERGITY_PCI_PPC or INTERGITY_PCI_X86.

7. Link with your CEI-x30 API static library, and include libposix.a and

libsocket.a. You should review the Integrity POSIX chapter to make

sure this POSIX option meets your application’s needs.

Integrity® Support Integrity Installation

CEI-x30-SW Software User's Manual 29

Figure 6. Example CEI-x30 INTEGRITY Application Project Option

8. Add sufficient MemoryPoolSize to create POSIX threads.

The example below uses 0x1000000, but your application may need

more. Add the MemoryPoolSize entry between the Filename and

Language entries in the Integrate file options.

Figure 7. Adding a MemoryPoolSize Entry

9. Build the project, then download and run your application. If you

desire the application to execute upon download, modify the value for

the DefaultStartIt attribute to be “true” as follows:

Integrity® Support Integrity Installation

CEI-x30-SW Software User's Manual 30

Figure 8. Modifying the Value for the DefaultStartIt Attribute

CEI-x30-SW Software User's Manual 31

CHAPTER 6

BusTools/ARINC™ Data Bus Analyzer

General Information

BusTools/ARINC is an optional ARINC 429 analysis and simulation

utility which runs under Windows. It enhances the utility of an underlying

ARINC 429 interface board by expanding your scope of control and by

providing additional instrumentation and analytical tools. Additionally,

BusTools/ARINC provides support for devices configured with ARINC

561, 717, or Commercial Standard Digital Bus (CSDB) channels.

BusTools/ARINC supports usage of up to four boards at the same time

or independently and allows simultaneous control of all channels on each

board.

Its data logging function streams data to disk or memory and replays it in a

time-sequenced display. It provides multiple buffering mechanisms,

including real-time display of data in engineering units. Strings of

outgoing messages are generated, repeated, or automatically stepped

through a sequence. Strings of incoming messages are filtered and

captured for current or future analysis. A database of standard ARINC

429 translations is included. Translation among binary, hexadecimal, and

engineering units is provided, as is a powerful user-defined label facility.

BusTools/ARINC Demo Software

A free demo version of BusTools/ARINC is available on our web site at

‘www.abaco.com/products/bt-arinc-bustools-software-analyzer’. The

demo software operates over a simulated ARINC 429 interface board, but

is otherwise identical to the full version.

CEI-x30-SW Software User's Manual 32

CHAPTER 7

Application Development with CEI-x30-SW

Overview

The CEI-x30-SW software distribution contains all of the Application

Programming Interface (API) and example source files, and additional

features necessary to support CEI-x30 board installation and application

development under the most common desktop and embedded

programming environments (Windows, Linux, Integrity, and VxWorks).

The example application programs are written in C and delivered in a

generic ANSI C compiler-compatible format. The API routines can be

called from other languages by adhering to the procedures defined in the

applicable documentation.

When installed under Windows, this distribution includes the necessary

device driver files and Windows libraries required for application

execution on the host system. The Windows distribution should be

installed on any Windows-based system in which a CEI-x30 board will be

used.

Windows Libraries

For the CEI-x30-SW supported products, separate 32-bit and 64-bit

Windows API Libraries are provided. For Windows OS target

implementation, all API function prototypes are declared “_stdcall”. The

CEI-x30 API library included in the installation is referenced as:

 CDEV_API.LIB 32-bit Microsoft VS6.0 Library

 CDEV_API.DLL 32-bit Microsoft VS6.0 DLL

 CDEV_API64.LIB 64-bit Microsoft VS2008 Library

 CDEV_API64.DLL 64-bit Microsoft VS2008 DLL

Application Development with CEI-x30-SW Data Types, Constants, and API Routine Prototypes

CEI-x30-SW Software User's Manual 33

Included with the installation are the Abaco Systems Common Low-level

driver interface and installation verification libraries (not required for

linking application programs):

 CEI_Install.DLL 32-bit Microsoft VS6.0 DLL

 CEI_Install64.DLL 64-bit Microsoft VS2008 DLL

All DLLs are installed in the Windows “System” folder. The exact folder

name depends on the host version of Windows operating system. The 32-

bit versions of these DLLs are typically installed in either

‘c:\winnt\system32’ or ‘c:\windows\system32’ under 32-bit Windows or

‘c:\windows\syswow64’ under 64-bit Windows. The 64-bit versions of

these DLLs will be installed in the 64-bit Windows system folder

(typically ‘c:\windows\system32’ under 64-bit Windows).

Data Types, Constants, and API Routine Prototypes

The C header file CDEV_API.H is the only header file required to be

included in application C/C++ source. It either contains or includes the

other header files that contain all data type, constant, and prototype

definitions required for application development in the C/C++

programming language.

Time-tag Structure Definition

The following API routines use the AR_TIMETAG_TYPE data structure

definition when providing a timer or time-tag reference, or as an initial

value for the internal timer reset:

 AR_GET_TIME

 AR_SET_TIME

 AR_GETNEXT_XT

 AR_GETWORD_XT

 AR_GET_DATA_XT

 AR_CONVERT_1553_TIME_TO_STRING

 AR_CONVERT_TIME_TO_STRING

Under the Windows and VxWorks operating systems, the

AR_TIMETAG_TYPE data structure and pAR_TIMETAG_TYPE pointer

types used by these routines are defined to use 64-bit integer values, as

follows:

timeTagFormat __int64 or long long

 As an input to the AR_GET*_XT routines,

this structure member specifies the desired

Application Development with CEI-x30-SW Time-tag Structure Definition

CEI-x30-SW Software User's Manual 34

format for the respective invocation,

overriding the global time-tag mode setup

for the respective board. As an output from

all routines, this structure member indicates

the format (size and resolution) of the

corresponding timeTag structure member.

Valid values for this structure member are:

AR_TIMETAG_EXT_IRIG_64BIT 0

AR_TIMETAG_INT_USEC_64BIT 1

AR_TIMETAG_HOST_USEC_64BIT 2

AR_TIMETAG_INT_20USEC_32BIT 3

AR_TIMETAG_INT_MSEC_32BIT 4

AR_TIMETAG_SYNC_1553_CH1 11

AR_TIMETAG_SYNC_1553_CH2 12

AR_TIMETAG_SYNC_1553_CH3 13

AR_TIMETAG_SYNC_1553_CH4 14

AR_TIMETAG_USE_PROGRAMMED_MODE 99

timeTag __int64 or long long

 The timer-referenced time-tag, formatted as

specified in the timeTagFormat structure

member.

referenceTimeTag __int64 or long long

 The original 64-bit, one microsecond CEI-

x30 board timer/time-stamp value reference

for the time value supplied in the timeTag

member.

Setting the Device Time

When assigning an initial time reference, the host application may choose

to set either the device 1 microsecond timer or the IRIG generator timer

via invocation of AR_SET_TIME.

When AR_SET_TIME is invoked with an AR_TIMETAG_TYPE data

structure parameter timeTagFormat member defined to be

AR_TIMETAG_EXT_IRIG_64BIT, the format of the timeTag member is

defined as a 30-bit entity of BCD-like values using the following format:

Application Development with CEI-x30-SW Return Status Values

CEI-x30-SW Software User's Manual 35

29-28 27-24 23-20 19-18 17-14 13-11 10-7 6-4 3-0

hundreds
of days

tens of
days

days tens of
hours

hours tens of
minutes

minutes tens of
seconds

seconds

When AR_SET_TIME is invoked with a timeTagFormat member defined

to be AR_TIMETAG_INT_USEC_64BIT, the timeTag member is

referenced as a 64-bit 1 microsecond timer value.

Return Status Values

The following return status values are used by the CEI-x30 API routines.

They are defined in the C header file CDEV_API.H and are used in the

following context:

C Constant Value Constant Definition

ARS_FAILURE -1 Requested operation failed

ARS_NODATA 0 No data was detected or received

ARS_NORMAL 1 Normal successful completion

ARS_GOTDATA 4 Data was received

ARS_BAD_MESSAGE 5 Receipt of an invalid ARINC

429 message was detected

ARS_RX_BUFFER_OVERRUN 6 Receive buffer overrun detected

ARS_INVHARCMD 1002 Invalid chn cfg in XML/Text file

ARS_INVHARVAL 1003 Invalid configuration value

ARS_XMITOVRFLO 1004 Transmit buffer overflow

ARS_INVBOARD 1005 Invalid board argument

ARS_NOSYNC 1006 Transmit buffer flush failed

ARS_BADLOAD 1007 Firmware download failed

ARS_MEMWRERR 1013 SRAM memory test error

ARS_INVARG 1019 General invalid argument value

ARS_DRIVERFAIL 1021 Driver failed to install or

uninstall the ISR

ARS_WINRTFAIL 1022 Legacy driver open failure

ARS_CHAN_TIMEOUT 1023 Channel timeout in receive

function

ARS_NO_HW_SUPRT 1024 Function not supported by

specified hardware

Application Development with CEI-x30-SW Programming with the CEI-x30 API Interface

CEI-x30-SW Software User's Manual 36

C Constant Value Constant Definition

ARS_BAD_STATIC 1027 Register write/read/verify failure

ARS_HW_CONSISTENCY 1029 Device is not programmed for

Enhanced Firmware operations

ARS_HW_DETECT 1030 Session opened but a CEI-x30

board was not detected

ARS_WRAP_DATA_FAIL 1031 BIT wrap test data read-back fail

ARS_WRAP_FLUSH_FAIL 1035 BIT cannot execute external

wrap test due to unknown

external data reception

ARS_WRAP_DROP_FAIL 1036 BIT wrap test data not received

ARS_INT_ISR 1037 Driver failed to install or

uninstall API interrupt support

ARS_BOARD_MUTEX 1038 API routine failed to acquire or

release a board lock mechanism

ARS_NO_OS_SUPPORT 1041 There is no operating system

support for the requested feature

ARS_NO_INT_SUPPORT 1043 Interrupt handling not supported

ARS_NO_INT_ENABLED 1044 Interrupt handling not enabled

ARS_ERR_SH_MEM_OBJ 1050 API failed to allocate a shared

object (semaphore or mutex)

ARS_ERR_SH_MEM_MAP 1051 API failed to allocate a shared

memory region (multi-process)

ARS_FW_NOT_SUPPORTED 1052 The firmware programmed on

the board is not compatible with

the API version in use.

ARS_RX_BIT_CMD_ERROR 1100 Rx BIT CMD read-back failure

ARS_RX_BIT_CHnn_ERROR 1101-

1132

Receive channel “nn” BIT

failure detected, 01-32

Programming with the CEI-x30 API Interface

Following the outline below, you can easily incorporate the CEI-x30 API

into your application.

1. For any Windows or Linux application incorporating multiple threads

or processes, invoke the AR_SET_PRELOAD_CONFIG routine to

prepare the API for a multi-threaded or multi-process operating

environment.

For any VxWorks or Integrity application incorporating multiple

threads or tasks, invoke the AR_SET_MULTITHREAD_PROTECT

routine after invoking AR_OPEN instead.

Application Development with CEI-x30-SW Example Routines in C – Summary

CEI-x30-SW Software User's Manual 37

2. For your application to interface to any CEI-x30 supported products

the device must first be initialized. Invoke the AR_OPEN routine with

the respective device number.

For Windows the device number is assigned during installation of

CEI-x30-SW. For all other operating systems the device number is

dependent on the PCI(e) controller bus/slot query order.

10. Assign general board level configuration settings along with the

characteristics of the individual transmit and receive channels, if the

default configuration is not appropriate. This is performed with

multiple invocations of AR_SET_DEVICE_CONFIG.

11. Perform receiver buffer mode selection based on individual

channel/protocol usage via the routine AR_SET_DEVICE_CONFIG.

Using buffered mode for multiple channels of the same protocol

provides channel-specific access to received data, where merged mode

provides for single receive channel access to selected channel data.

12. Once channel configuration is complete, invoke AR_GO to initiate

data processing.

13. Then invoke AR_PUTWORD and AR_GETWORD to send and

receive single ARINC 429 messages, respectively. See the respective

API routines summary section for transmission and reception routines

for a broader selection of support for these operations.

14. When communication is complete, invoke AR_STOP to suspend

active data processing. Subsequently, you could invoke AR_GO again

to restart message processing.

15. On termination of the application, invoke AR_CLOSE to release all

resources acquired during initialization. It is very important that all

applications invoke AR_CLOSE upon termination; otherwise, the

operating system does not release the memory acquired when the API

was initialized.

The example wrap program source code, contained in TST_CNFG.C, is

supplied with your installation. This program demonstrates the use of the

API for the ARINC 429 and equivalent protocols.

When calling the utility routines that return a status value, it is important to

verify the returned status indicates success; otherwise, the application may

not be aware that an important function may have failed to fulfill a

requested operation.

Example Routines in C – Summary

Example applications demonstrating various CEI-x30 API features are

provided in the C programming language, as described in the following

paragraphs.

Application Development with CEI-x30-SW Example Routines in C – Summary

CEI-x30-SW Software User's Manual 38

Tst_cnfg.c

The example source file TST_CNFG.C is included with your installation.

To access this example executable under the Windows operating system:

1. Click Start, and then Programs.

16. Select Abaco CEI-x30-SW and then Test Configuration.

Within TST_CNFG.C are application-style routines demonstrating use of

the API routines for the ARINC 429 protocol:

test_basic_arinc_429 An internal wrap test designed to

demonstrate ARINC 429 API usage. This

routine enables internal wrap on all 429

receive channels. It also assigns a bus speed

of 12.5kbps and ODD parity to both transmit

and receive channels. Ten ARINC 429

messages are sent on each transmit channel

and proper reception verified on the

respective receive channel.

demo_advanced_arinc_429 A demonstration of the following advanced

features available with CEI-x30 products:

Transmit Message Scheduling

Enhanced Label/SDI/ESSM Data Filtering

Snapshot Message Data Acquisition

Enhanced Time-tag Reset and Conversion

IRIG Time-tag Selection (if installed on hardware)

demo_discrete_io_features A demonstration on the use of the Discrete

I/O Channels and the respective API

routines

demo_irig_features A demonstration of IRIG features requiring

an external IRIG connection:

IRIG DAC Threshold Adjustment

IRIG Bias (Offset) Time Assignment

IRIG Validity Determination

IRIG Time Conversion and Display

test_arinc_717 An internal wrap test designed to

demonstrate ARINC 717 protocol support.

This routine enables internal wrap on the

ARINC 717 receive channel. It also assigns

a bus speed 768bps, a sub-frame size of 64

words, and a BPRZ selection to the ARINC

717 transmit and receive channels. A frame

consisting of a data pattern incrementing

from $01 to $FF and sync words of $123,

Application Development with CEI-x30-SW Example Routines in C – Summary

CEI-x30-SW Software User's Manual 39

$224, $325, and $426 is transmitted and

proper reception verified.

demo_pci_interrupts This routine demonstrates how to setup a

custom interrupt service routine, setup Label

Filter Table triggers generating interrupt

events, enabling interrupts, and retrieving

interrupt event data from the queue.

custom_interrupt_handler This routine is the custom interrupt service

routine assigned within the example routine

demo_pci_interrupts.

demo_programmable_channels Demonstration of how to define software

programmable/shared channels as

transmitters or receivers.

Config_from_file.c

This application-level source code demonstrates the channel configuration

and scheduled message definition from files features available with the

CEI-x30-SW distribution. Two files are available for each selected file

type, XML and text, one for channel configuration of a two-channel board

and the other defining four scheduled messages on each of two transmit

channels. The four data files used with this application are:

8 msg def.txt

8 msg def.xml

2 chan cfg.txt

2 chan cfg.xml

Multiprocess_test.c

Provisions for simultaneous multiple process access to a CEI-x30 board

are supported under the Windows and Linux operating systems. This

feature is implemented in the standard API with minimal requirements on

the application developer. The example program contained in the source

file multiprocess_test.c describes how one method of multi-process

application may be implemented.

This example application is based on separate processes, one for ARINC

429 scheduled message transmission on multiple transmit channels, and

others for ARINC 429 message reception on individual receive channels.

Regardless of the process invocation type, setup for the multiple process

application is performed via invocation of the API routine

AR_SET_PRELOAD_CONFIG, prior to invocation of AR_OPEN.

Application Development with CEI-x30-SW C# Support

CEI-x30-SW Software User's Manual 40

A single "transmit" process should be launched first, with subsequent

invocation of one or more "receive" processes. The "transmit" process

loads the board using AR_OPEN, configure board and transmit channel

specific parameters using AR_SET_DEVICE_CONFIG, and activate data

processing using AR_GO. After the "transmit" process invokes AR_GO,

it is permissible to launch one or more "receive" processes. A "receive"

process first attaches to the board using AR_OPEN, then execute

operations strictly confined to the particular channel to which that process

is associated (in this case AR_SET_DEVICE_CONFIG and

AR_GETWORDT). When finished, each "receive" process invokes

AR_CLOSE and terminates. The "transmit" process should remain

running until all "receive" processes have terminated; upon termination the

"transmit" process invokes AR_STOP and AR_CLOSE.

While the previously discussed application API invocation order is

recommended, it is not strictly required. You may actually invoke a

"receive" process first and terminate it last; however, multi-process

applications should rely on a primary board-control process as the focus

for board initialization, BIT functionality, and control of h/w message

processing.

C# Support

The CEI-x30 API is an unmanaged DLL, not built using the .NET

framework; however, a managed DLL wrapper allows you to use the CEI-

x30 API library in your application development. This reference solution

consists of:

 A managed wrapper class written in C# that encapsulates the CEI-

x30 API function prototypes, constants, and data types.

 A sample managed GUI written in C# that demonstrates use of the

wrapper class to interact with a CEI-x30 product.

The managed wrapper class can be used with C#, VB.NET, or any of the

managed languages .NET supports. This documentation assumes

familiarity with Visual Studio 2008 or later, and creating and running

.NET applications.

The Reference Solution

The reference solution is a Microsoft Visual Studio 2008 solution in the

CEI-x30-SW\Examples\C#\C# Wrapper Example folder, named

ArincCsApplication.sln. When you open this solution, you will see two

projects in the solution explorer window.

 ArincCsApp: This project creates the C# application

ArincCsApp.exe, which allows you to perform a simple single

Application Development with CEI-x30-SW C# Support

CEI-x30-SW Software User's Manual 41

ARINC 429 channel internal or external wrap test or monitor

reception on a specific ARINC 429 receiver.

 ArincCsWrapper: This project creates the C# class library

ArincCsWrapper.dll, which wraps the unmanaged CEI-x30 API

functions, constants, and data types.

The Managed Wrapper Class

The ArincAPI namespace encapsulates all the API functions, Data Types,

and Constant definitions. It is recommended you do not change this

namespace name, as it identifies the wrapper and provides name separation

when loaded into other projects.

The API static class contains managed entry points for most of the CEI-

x30 API functions from the unmanaged CEI-x30 API library (with the

prefix “ar_” omitted). The .NET interop environment requires that

managed entry points be contained in a static class. This class is found in

file API.cs, with supported functions listed below.

The DataTypes namepsace contains managed equivalents of the

structures required by the unmanaged CEI-x30 API library. The

managed equivalents are implemented using C# structures, classes, and

unions. This namespace is found in file DataTypes.cs.

The Constants static class contains managed definitions of the constants

required by the unmanaged CEI-x30 API library. This class is found in

file Constants.cs.

Adding the Managed Wrapper to an Existing .NET Application

First, it is suggested (but not required) that you add the C# project

ArincCsWrapper to your existing .NET solution.

Then, in the Solution Explorer, right-click your project and select "Add

Reference". If you added ArincCsWrapper to your solution, click the

Projects tab and select ArincCsWrapper. Otherwise, select the Browse tab

and locate ArincCsWrapper.dll on your disk.

At the top of each of your code pages, add the following lines:

using ArincAPI;

using ArincAPI.DataTypes;

using System.Runtime.InteropServices;

You may need to edit the file API.cs in the ArincCsWrapper project. At

the top of this file is a statement that defines exactly where cdev_api.dll

should be found.

You can now use the managed wrapper classes in your project.

Application Development with CEI-x30-SW C# Support

CEI-x30-SW Software User's Manual 42

C# Managed Wrapper Functions

The following is an alphabetical function list showing the link between the

managed wrapper functions in the namespace/class ArincAPI.API, to the

respective unmanaged CDEV_API.DLL function exports.

Assign_Scheduler_Start_Offsets ar_assign_scheduler_start_offsets

Bypass_Wrap_Test ar_bypass_wrap_test

Close_Session ar_close

Clear_Rx_Count ar_clr_rx_count

Define_Periodic_Message ar_define_msg

Define_Msg_Block ar_define_msg_block

Enh_Label_Filter ar_enh_label_filter

Execute_Bit ar_execute_bit

Get_Board_Name (see Note) ar_get_boardname

Get_Board_Type ar_get_boardtype

Get_Config ar_get_config

Get_Data ar_get_data

Get_Data_XT ar_get_data_xt

Get_Device_Config ar_get_device_config

Get_Error (see Note) ar_get_error

Get_Filter_Table ar_getfilter

Get_429_Message ar_get_429_message

Get_573_Config ar_get_573_config

Get_573_Frame ar_get_573_frame

Get_Label_Filter ar_get_label_filter

Get_Latest ar_get_latest

Get_Latest_T ar_get_latest_t

Get_Msg_Block ar_getblock

Get_Msg_Block_T ar_getblock_t

Get_Next ar_getnext

Get_Next_T ar_getnextt

Get_Next_XT ar_getnext_xt

Get_Snap_Data ar_get_snap_data

Get_RX_Channel_Status ar_get_rx_channel_status

Get_RX_Count ar_get_rx_count

Get_RX_Status ar_get_status

Get_RX_Storage_Mode ar_get_storage_mode

Get_Time ar_get_time

Application Development with CEI-x30-SW C# Support

CEI-x30-SW Software User's Manual 43

Get_Transmitter_Mode ar_get_transmitter_mode

Get_Word ar_getword

Get_Word_T ar_getwordt

Get_Word_XT ar_getword_xt

Go ar_go

Interrupt_Buffer_Read ar_hw_interrupt_buffer_read

Interrupt_Queue_Read ar_interrupt_queue_read

Label_Filter ar_label_filter

Modify_Msg ar_modify_msg

Modify_Msg_Block ar_modify_msg_block

Num_RX_Chans ar_num_rchans

Num_TX_Chans ar_num_xchans

Open_Session ar_open

Put_Block ar_putblock

Put_Block_Multi_Chan ar_putblock_multi_chan

Put_Filter_Table ar_putfilter

Put_429_Message ar_put_429_message

Put_573_Frame ar_put_573_frame

Put_Word ar_putword

Query_Device ar_query_device

Read_Scheduled_Msg_Block ar_read_scheduled_msg_block

Read_Message_Schedule_Table_Entry ar_read_message_schedule_table_entry

Reset_Device ar_reset

Reset_Timer_Count ar_reset_timercnt

Set_Config ar_set_config

Set_Device_Config ar_set_device_config

Set_573_Config ar_set_573_config

Set_Multi_Thread_Protect ar_set_multithread_protect

Set_ISR_Function ar_set_isr_function

Set_Preload_Config ar_set_preload_config

Set_Raw_Mode ar_set_raw_mode

Set_Storage_Mode ar_set_storage_mode

Set_Time ar_set_time

Set_Timer_Rate ar_set_timerrate

Set_Transmitter_Mode ar_set_transmitter_mode

Sleep ar_sleep

Stop ar_stop

Application Development with CEI-x30-SW Visual Basic and VB.NET Support

CEI-x30-SW Software User's Manual 44

Update_Message_Block ar_update_message_block

Transmit_Sync ar_xmit_sync

Dynamic memory allocation issues exist under 64-bit Windows when a C DLL function
that returns a string. See the routines ar_get_error_as_managed_string and
ar_get_boardname_as_managed_string in the C# source file ArincFunctions.cs for the
managed-string solution for these API routines.

Visual Basic and VB.NET Support

The CEI-x30-SW distribution contains sample Visual Studio 2008 .NET

solutions providing support for the Visual Basic and C# programming

languages. These solutions are located in folders beneath the

Examples\C# folder within the CEI-x30-SW software distribution.

Beneath the first folder “.Net Console Example”, the first sub-folder

CEIx30NetClass contains a solution called x30Wrap.sln, which builds a

VB wrapper class library over the standard API library cdev_api.dll, called

Ceix30ClassLib.dll. Within this library is the class “Arinc”, containing

many of the necessary constants, data types, and function references to

support application development with the CEI-x30 API. The second folder

Arinc429Example, contains a solution called Arinc429Example.sln, which

is a very basic C# console application based on the source file

CEIx30Class.cs, and demonstrating how to use the “Arinc” class for .NET

application development.

Visual Basic Support

A text file, CDEV_API_VB.TXT, is provided to aid the Visual Basic

programmer in using the CDEV_API DLL in the Examples\VB folder of

the software distribution. This text file contains the Function Declaration

and Global Constant statements required to interface to CDEV_API.DLL.

You can manually copy and paste text from this file to your project, or you

can use the Microsoft API Text Viewer utility included with Visual Basic.

For more information on the API Text Viewer, consult Microsoft Visual

Basic documentation.

The CDEV_API_VB.TXT is designed for use with any 32-bit version of

Visual Basic; however, the VB example and API interface are

recommended for use with Visual Basic version 6.0 or later.

Note:

Application Development with CEI-x30-SW AutoConfig ARINC Configuration File Generator

CEI-x30-SW Software User's Manual 45

Working with Unsigned Integers in Visual Basic

Visual Basic doesn’t support unsigned integers. Since the CEI-x30 API

library uses unsigned integers for some function parameters, problems can

arise when attempting to set values in the upper half of the range.

Example

When a CEI-x30 API function uses an argument of C type unsigned short

the equivalent type is integer in Visual Basic or short in VB.Net. All are

16-bit values but the Visual Basic variable has a range of -32768 to 32767.

The C argument has a range of 0 to 65535. A Visual Basic error is

generated if an integer type is set to value greater than 32767.

Solutions

There are two solutions to this problem. The easiest is to set the value of

variables directly in Hex. To set an integer variable to 65535 use:

myVariable = &HFFFF. (note the &H syntax) . For setting long variables

use the ending “&” as in myvar = &H12&.

The second solution is to convert the desired unsigned value to the signed

equivalent. This can be accomplished in a small utility function:

Function u_conv (unsigned as Long) as Integer

 Dim signed as Integer

 If unsigned > 32767 then

 signed = unsigned - 65536

 Else

 signed = unsigned

 End If

 u_conv = signed

End Function

When using returned values from CEI-x30 API functions the opposite

conversion can be made. Often, the returned values from CEI-x30 API

functions simply need to be compared to the predefined values.

AutoConfig ARINC Configuration File Generator

The capability to create channel configuration and scheduled message

definition files, and initialize a CEI-x30 board using the corresponding VIs

is available with this distribution. See the “AutoConfig ARINC User’s

Manual” supplied in the folder \Utilities\AutoConfig ARINC within this

distribution for a detailed description on the use of this application.

Application Development with CEI-x30-SW Dealing with Complex Message Scheduler Transmit Scenarios

CEI-x30-SW Software User's Manual 46

Dealing with Complex Message Scheduler Transmit Scenarios

Whether a transmit channel is operating at 100Kbps or 12.5Kbps, any

scheduled message scenario that introduces as little as 50% bus loading is

susceptible to message rate skew. The ability to assign proper offsets to

the scheduled message rate definitions can become cumbersome in such

situations. For these cases two options are provided:

The Start Offset Assistant utility will accept an input text file containing a

C-like message scheduler structure array layout with defined channel

message scenarios and generate an output text file with assigned start

offset values. The contents of the output text file can then be copied as a C

data structure array into the application source, to be used with the API’s

message scheduler support routines. See the “Start Offset Assistant”

User’s Manual in the folder C:\Users\Public\Documents\Condor

Engineering\CEI-x30-SW\Utilities\Start Offset Assistant for a detailed

description on the use of this tool.

The CEI-x30 API also provides a utility routine supported under the

Windows and Linux operating systems that will update the contents of the

existing message scheduler table with start offset values calculated in a

best attempt to avoid rate skew based on the programmed bus speed for

individual transmit channels. The start offset values are computed based

on the message count and rates defined per transmit channel. For more

details, see the routine AR_ASSIGN_SCHEDULER_START_OFFSETS

within this document.

CEI-x30-SW Software User's Manual 47

CHAPTER 8

Application Programming Interface

Overview

Abaco Systems supplies an extensive software Application Programming

Interface (API) for the CEI-x30 family of ARINC products. API routines

are supplied to setup the interface, configure channel attributes, and

transmit and receive ARINC 429 and 717 messages.

CEI-x30 API Source Files

The CEI-x30 API is written in C and delivered in a generic ANSI C

compiler-compatible format. The API source file set consists of the

following files:

CDEV_API.C

This file contains a limited set of API routines providing access to the

most used features and functionality for an embedded application

environment.

CDEV_API_A717.C

This file contains the set of API routines specifically related to the ARINC

717 protocol features and functionality provided with the CEI-x30

products.

Application Programming Interface CEI-x30 API Source Files

CEI-x30-SW Software User's Manual 48

CDEV_API_CFG_FILE.C

This file contains the set of API routines specifically related to the

configuration file accessible board configuration and scheduled message

setup features.

CDEV_API_EXP_RX.C

This file contains the set of API routines specifically related to both the

expanded and legacy message receive functions.

CDEV_API_EXP_TX.C

This file contains the set of API routines specifically related to both the

expanded and legacy message transmit functions.

CDEV_API_INTRPT.C

This file contains the set of API routines specifically related to the PCI

Interrupt features and functionality provided with the CEI-x30 products.

CDEV_API_IRIG.C

This file contains the set of private API utility routines specifically related

to the IRIG generator and receiver features and functionality provided with

the CEI-x30 products.

CDEV_API_LEGACY_API.C

This file contains the set of API routines specifically provided to support

application migration from older ARINC products and API’s.

CDEV_API_PLX_PGM.C

This file contains the set of private API utility routines specifically related

programming the firmware on CEI-x30 products utilizing a PLX PCI

interface design.

Application Programming Interface CEI-x30 API Source Files

CEI-x30-SW Software User's Manual 49

CDEV_API_RX_FILTER.C

This file contains the set of API routines specifically related to the Receive

Label Filtering features and functionality provided with the CEI-x30

products.

CDEV_API_SCHED.C

This file contains the set of API routines specifically related to the onboard

Transmit Message Scheduler features and functionality provided with the

CEI-x30 products.

CDEV_API_UTILITY.C

This file contains the set of API routines specifically related to utilities not

typically incorporated into embedded or simulation based applications.

CDEV_WIN.C

This file contains the C routines that interface directly with the Avionics

common low-level driver interface library, CEI_INSTALL.LIB/DLL,

supporting all Windows operating systems.

CDEV_VXW.C

This file contains the C routines that interface directly with the Avionics

common VxWorks kernel driver (VxBus or Legacy PCI).

CDEV_LNX.C

This file contains the routines that interface directly with the Linux kernel

driver provided with the CEI-x30 Linux distribution archive.

CDEV_INT.C

This file contains the routines that interface directly with the Avionics

common Integrity PCI driver.

Application Programming Interface CEIx-30 API Header Files

CEI-x30-SW Software User's Manual 50

CDEV_LRT.C

This file contains the routines that interface directly with the LabVIEW

Real-Time operating environment.

CEIx-30 API Header Files

The only C header file required to be included in application source is

CDEV_API.H. This file and the remaining C header files utilized in the

CEI-x30 API are described as follows:

CDEV_API.H

This header file contain the majority of the definition for API constants,

data types, and function prototypes, and should be included in all C/C++

application source files that reference one or more CEI-x30 API utility

routines.

CDEV_GLB.H

This header file contains the majority of the API internal global variables,

internal definitions, and data structures.

CEIX30_TYPES.H

This header file contains all of the CEI-x30 API build-specific parameter

and structure data types, based on the Abaco Systems Avionics product

common types defined in CDEV_API.H; included in CDEV_API.H.

CEI_TYPES.H

This header file contains all of the Abaco Systems Avionics product

common type defines for the various data types used with the respective

operating system and compiler; included in CEIX30_TYPES.H.

CDEV_API_CFG.H

This header file contains #define declarations that affect the compilation

(inclusion) of select routines and functionality in the C source files, and C

function prototypes defined in CDEV_API.H and CDEV_GLB.H. It is

Application Programming Interface CEIx-30 API Header Files

CEI-x30-SW Software User's Manual 51

specifically provided for building a custom API in an embedded target

environment; included in CDEV_API.H.

AR_ERROR.H

This header file contains the error string constant definitions utilized by

the API routine AR_Get_Error, describing each of the potential error

codes returned by the CEI-x30 API utility routines.

CDEV_HW.H

This header file contains all of the API constants that define the hardware

interface for the CEI-x30 architecture; included in CDEV_API.H.

CEI_INSTALL.H

This header file contains all of the Abaco Systems Avionics product

common type defines for the Windows Common Driver Interface library.

CDEV_FW.H - Firmware Load Files

The header file CDEV_FW.H is included in the source file CDEV_API.C,

containing the array declarations for all API-loaded CEI-x30 board

firmware. The default compilation of CDEV_API.C includes the firmware

load modules for the entire CEI-x30 product line. When the compiler

directive LABVIEW_RT is defined, only the firmware for the CEI-830,

RCEI-830A, R830RX, RCEI-530, and RAR-CPCI boards are included in

the build, as these are the products currently supported with LabVIEW

Real-Time. When the compiler directive INTEGRITY_PCI_PPC is

defined, only the CEI-830, RCEI-830A, R830RX, RAR-CPCI, CEI-430,

and RCEI-530 firmware is included in the build. The RAR-PCIE, RAR-

MPCIE and RAR15-XMC combo-card firmware is loaded from Flash

Memory, and is not subject to a required firmware header file.

If for any reason you wish to reduce the API library or object module size

by omitting the firmware load modules for extraneous boards, you may

replace the header file reference in the respective include statement(s) with

the header file FPGAX30N.H. For example, to omit the RAR-CPCI

firmware load module you would modify line 86 of the file CDEV_FW.H

as follows:

 static CEI_UINT32 const fpga_630[]={

 #include "fpgax30n.h"

 };

The firmware header files are referenced as follows:

Application Programming Interface Building the API for Embedded and Certified Systems

CEI-x30-SW Software User's Manual 52

FPGA830.H CEI-830 Firmware

FPGA830A.H RCEI-830A Firmware

FPGA830RX.H R830RX Firmware

FPGA430.H CEI-430 Firmware

FPGA430A.H CEI-430A Firmware

FPGA530.H CEI-530 Firmware

FPGA630.H RAR-CPCI Firmware

FPGAA30.H AMC-A30 Firmware

FPGA_EC.H RAR-EC Firmware

FPGA830X820.H RCEI-830X820 Firmware

FPGAX30N.H Two element array (empty f/w allocation)

Building the API for Embedded and Certified Systems

The CEI-x30 API file set contains provisions for limiting the scope of the

API source included in a custom API build. Limiting API content in a

build can drastically reduce effort involved in both deliverable code

analysis and software validation, tasks typically encountered in embedded

and certified systems.

Defining Custom Content in Your API Build

For any API build, the file CDEV_API.C is the basic API source file that

must be included in a custom CEI-x30 API source build. It contains the

rudimentary API routines for accessing basic board configuration and

ARINC 429 message transmission and reception operations. This file may

be modified, and content removed by the user; however, any functions

removed should have the respective prototype removed from

CDEV_API.H (and/or CDEV_GLB.H).

You may add API source code supporting the desired CEI-x30 features by

selectively including any of the remaining C source files for the respective

functionality in your API project (see section CEIx-30 API C Source

Files). In conjunction with the source files included in your build, control

of which API and local utility function prototypes are defined in

CDEV_API.H and CDEV_GLB.H is provided in the file

CDEV_API_CFG.H.

The relationship between the definitions in CDEV_API_CFG.H, the

source files containing the referenced functions, the CDEV_API.H

prototype definitions affected by those definitions, and a list of the

respective functions, are all documented in the following table.

Application Programming Interface Building the API for Embedded and Certified Systems

CEI-x30-SW Software User's Manual 53

Feature/Functionality CDEV_API_CFG.H
Definition

Associated C
Source File

API Functions Included and
Prototypes Affected

Default CEI-x30 API
Routine Set

N/A cdev_api.c

ar_board_test

ar_bypass_wrap_test

ar_close

ar_clr_rx_count

ar_execute_bit

ar_get_device_config

ar_get_error

ar_get_rx_channel_status

ar_get_rx_count

ar_get_time

ar_getblock_t

ar_getword

ar_getword_xt

ar_get_latest_t

ar_get_snap_data

ar_go

ar_initialize_api

ar_initialize_device

ar_num_rchans

ar_num_xchans

ar_open

ar_putblock

ar_putword

ar_reset

ar_set_device_config

ar_set_multithread_protect

ar_set_preload_config

ar_set_storage_mode

ar_set_time

ar_sleep

ar_stop

API Utility Routines INCLUDE_API_UTILITIES cdev_api_utility.c

ar_convert_time_to_string

ar_convert_1553_time_to_string

ar_get_base_addr

ar_get_boardname

ar_get_boardnameLV

ar_get_boardtype

ar_get_channel_index_info

ar_get_config

ar_get_storage_mode

ar_query_device

ar_version

ARINC 717 Support INCLUDE_ARINC_717 cdev_api_a717.c

ar_get_573_config

ar_get_573_frame

ar_get_transmitter_mode

ar_put_573_frame

ar_set_573_config

ar_set_transmitter_mode

PCI Interrupt Support INCLUDE_INTERRUPTS cdev_api_intrpt.c

ar_hw_interrupt_buffer_read

ar_int_control

ar_interrupt_queue_read

ar_set_isr_function

IRIG Time Support INCLUDE_IRIG cdev_api_irig.c API private routines only

Application Programming Interface Building the API for Embedded and Certified Systems

CEI-x30-SW Software User's Manual 54

Feature/Functionality CDEV_API_CFG.H
Definition

Associated C
Source File

API Functions Included and
Prototypes Affected

PMC/PCI/Express Card and
PC104/Plus Support

INCLUDE_PLX_SUPPORT cdev_api_plx_pgm.c API private routines only

Receive Label Filter
Support

INCLUDE_LABEL_FILTER cdev_api_rx_filter.c

ar_enh_label_filter

ar_getfilter

ar_get_label_filter

ar_label_filter

ar_putfilter

Transmit Message
Scheduler Support

INCLUDE_MSG_SCHEDULER cdev_api_sched.c

ar_assign_scheduler_start_offsets

ar_define_msg

ar_define_msg_block

ar_define_msg_block_lv

ar_modify_msg

ar_modify_msg_block

ar_modify_msg_block_lv

ar_read_scheduled_msg_block

ar_read_message_schedule_table_entry

ar_update_message_block

Expanded and Legacy
Message Reception and
Retrieval Support

INCLUDE_EXPANDED_RX cdev_api_exp_rx.c

ar_get_data

ar_get_data_xt

ar_get_429_message

ar_get_latest

ar_getblock

ar_getnext

ar_getnextt

ar_getwordt

ar_getnext_xt

Expanded Message
Transmit Support

INCLUDE_EXPANDED_TX cdev_api_exp_tx.c
ar_putblock_multi_chan

ar_put_429_message

Configuration File Support INCLUDE_CFG_FILE cdev_api_cfg_file.c

ar_config_channels_from_txt_file

ar_channel_configuration_from_xml_file

ar_define_messages_from_txt_file

ar_define_messages_from_xml_file

Legacy API Support INCLUDE_LEGACY_API cdev_api_legacy_api.c

ar_get_status

ar_get_timercntl

ar_get_timercnt

ar_get_raw_mode

ar_init_dual_port

ar_init_slave

ar_reset_timercnt

ar_set_raw_mode

ar_set_config

ar_set_timerrate

ar_wait

ar_int_control

ar_recreate_parity

ar_reset_int

ar_setinterrupts

ar_setchparms

ar_xmit_sync

ar_dump_dp

ar_force_version

ar_formatarinclabel

ar_formatbinarylabel

Application Programming Interface Building the API for Embedded and Certified Systems

CEI-x30-SW Software User's Manual 55

Feature/Functionality CDEV_API_CFG.H
Definition

Associated C
Source File

API Functions Included and
Prototypes Affected

ar_get_errorLV

ar_get_harris

ar_int_set

ar_int_slave

ar_loadslv_init_disc

ar_msg_control

ar_putword2x16

ar_reformat

ar_set_arinc_config

ar_set_harris

ar_timetag_control

ar_unformat

ar_flush_receiver

Table 3. CEI-x30 API C Source File Content for a Custom Build

Excluding Parameter Validation and Thread Protection

In many embedded and certified target systems, parameter validation and

thread protection processing are not required or desired. Defining the

compiler directive TARGET_EMBEDDED allows you to build the API

source code such that it excludes most lines of code invoking parameter

validation and all thread protection from compilation. This can optimize

API code execution and reduce the deliverable code analysis and software

validation effort.

Defining the Data Types Used in Your API Build

The default data types used for the CEI-x30 API function return

parameters/status arguments match those types used in the legacy API’s

that preceded it (for ease of application transition to the latest ARINC

products). These default data types and the mixed datatype usage that

accompanies it do not meet the requirements of most code analysis tools,

and tend to be less desirable for embedded and certified systems usage.

For this type of target build, provisions for defining the common CEI-x30

API data types within the file CEIX30_TYPES.H exists, in which most

return parameter and API function argument data types can be defined as a

mix of signed and unsigned 32-bit integer. The compiler directive

TARGET_OPTIMAL_TYPES is the mechanism by which the alternate

data type definitions are introduced into the API source.

If you build the CEI-x30 API with the directive TARGET_OPTIMAL_TYPES defined and use
the CEI-x30 data type declarations in your application source, you must define this
directive for your application source compilation.

Note:

Application Programming Interface API Data Types

CEI-x30-SW Software User's Manual 56

API Data Types

The actual data types used in the CEI-x30 return parameters and function

arguments are documented as follows, both for the default API build and

the alternate API build (when building the API with the compiler directive

TARGET_OPTIMAL_TYPES defined). The C header files in which

these type definitions reside are CEIX30_TYPES.H and CEI_TYPES.H.

Data Type Definition Default Data Types

TARGET_OPTIMAL_TYPES not defined

Alternate Data Types

TARGET_OPTIMAL_TYPES defined

CDEV_API_RET_TYPE
CEI_INT16

signed short integer

CEI_INT32

signed integer

CDEV_BOARD_TYPE
CEI_INT16

signed short integer

CEI_UINT32

unsigned integer

CDEV_CHAN_TYPE
CEI_INT16

signed short integer

CEI_UINT32

unsigned integer

CDEV_PARM_USI_TYPE
CEI_UINT16

unsigned short integer

CEI_UINT32

unsigned integer

CDEV_PARM_SSI_TYPE
CEI_INT16

signed short integer

CEI_UINT32

unsigned integer

CDEV_PARM_SSI_PTR_TYPE
CEI_INT16 *

signed short integer pointer

CEI_UINT32 *

unsigned integer pointer

CDEV_PARM_SI_TYPE
CEI_INT32

signed integer

CEI_UINT32

unsigned integer

CDEV_PARM_SI_PTR_TYPE
CEI_INT32 *

signed integer pointer

CEI_UINT32 *

unsigned integer pointer

CDEV_PARM_VOID_PTR_TYPE
CEI_VOID * (pCEI_VOID)

void pointer

CEI_UINT32 * (pCEI_UINT32)

unsigned integer pointer

TIME_TAG_TYPE
CEI_UINT64

signed 64-bit integer (long long)

CEI_UINT64

signed 64-bit integer (long long)

pCEI_UINT32 unsigned integer pointer unsigned integer pointer

pCEI_INT32 integer pointer integer pointer

pCEI_CHAR character pointer character pointer

CEI_VOID void void

Table 4. CEI-x30 API C Data Type Definitions

Application Programming Interface API Routines - Summary

CEI-x30-SW Software User's Manual 57

API Routines - Summary

The routines provided in the API supporting the CEI-x30 device features

are defined in the following pages, categorized and summarized:

Initialization and Control Routines

ar_open The main initialization routine acquiring the

necessary resources and initializing the CEI-

x30 device.

ar_board_test Verifies the CEI-x30 data processing

capabilities via internal/external data wrap.

ar_bypass_wrap_test Controls conditional execution of the

ARINC 429 internal wrap test within

ar_initialize_device.

ar_initialize_device Initializes the CEI-x30 device to the default

state.

ar_loadslv A legacy routine replicating the ar_open

routine processing.

Device Control Routines

ar_go Enables CEI-x30 ARINC data processing.

ar_reset Disables CEI-x30 ARINC data processing

and initializes the device to the default state.

ar_stop Disables CEI-x30 ARINC data processing.

Termination Routines

ar_close Releases all resources for the specified

device.

Receive/Transmit Channel-level Configuration Routines

ar_channel_configuration_from_xml_file Configures channels based on

settings supplied from an XML file.

ar_config_channels_from_txt_file Configures channels based on settings

supplied from a text file.

Application Programming Interface API Routines - Summary

CEI-x30-SW Software User's Manual 58

ar_set_device_config As the main channel configuration routine, it

assigns ARINC 429-specific transmitter and

receiver channel configuration information.

ar_get_device_config Retrieves the value of a bit field for I/O and

ARINC 429 transmitter or receiver channel

configuration registers.

ar_enh_label_filter Assigns the enhanced label filter table

definition for each CEI-x30 device receiver.

ar_get_config Retrieves board-level configuration and API

local attribute values.

ar_get_573_config Retrieves the value of a bit field for an

ARINC 573/717 transmitter or receiver

channel configuration register.

ar_get_filter Retrieves the specified label filter buffer

entry from the enhanced label filter table.

ar_get_label_filter Retrieves the active state of label filtering

for a single label on all receivers.

ar_label_filter Assigns ARINC 429 label values to be

filtered by the specified receive channel.

ar_putfilter Places the specified label filter buffer entry

in the enhanced label filter table.

ar_set_config Assigns board-level configuration and API

local attribute values.

ar_set_573_config Assigns ARINC 573/717 transmitter and

receiver channel configuration information.

Device-level Configuration Routines

ar_get_storage_mode Retrieves the API state of a device-generic

receive data storage mode.

ar_set_raw_mode Assigns both transmitter and receiver parity

state on the specified ARINC 429 channel.

ar_set_storage_mode Assigns the device-level receive data storage

mode.

Application Programming Interface API Routines - Summary

CEI-x30-SW Software User's Manual 59

Receive Data Processing Routines

ar_get_429_message Retrieves the next ARINC 429 message

from a receive buffer. Optionally, it waits

up to ½ second for data to become available.

ar_get_573_frame Retrieves a specified number of ARINC 573

data words from the receive buffer.

ar_getnext Retrieves the next message from the

specified receive buffer. It waits up to ½

second for data to become available.

ar_getnextt Retrieves the next message and a 32-bit, 20

sec time-tag from the specified receive

buffer. It waits up to ½ second for data to

become available.

ar_getnext_xt Retrieves the next message with a 64-bit,

user-programmable time-tag from the

specified receive buffer. It waits up to ½

second for data to become available.

ar_getword Retrieves the next message from the

specified receive buffer.

ar_getwordt Retrieves the next message and a 32-bit, 20

sec time-tag from the specified receive

buffer.

ar_getwordt_xt Retrieves the next message from the

specified receive buffer with a 64-bit, user-

programmable time-tag.

ar_get_data Retrieves the next available data and the 64-

bit, 1 sec time-tag from a receive buffer.

ar_get_data_xt Retrieves the next available data from a

receive buffer with a 64-bit, user-

programmable time-tag.

ar_getblock Retrieves all of the available ARINC 429

messages from the requested receive buffer

with 32-bit time-tags.

ar_getblock_t Retrieves all of the available ARINC 429

messages from the requested receive buffer,

with 64-bit time-tags.

ar_get_latest Retrieves the latest message from the

snapshot buffer for the specified

channel/label combination.

Application Programming Interface API Routines - Summary

CEI-x30-SW Software User's Manual 60

ar_get_latest_t Retrieves the latest message and time-tag

from the snapshot buffer for the specified

channel/label combination.

ar_get_snap_data Retrieves the latest message from the

snapshot buffer for the specified

channel/label/sdi combination.

Transmit Data Processing Routines

ar_assign_scheduler_start_offsets Computes and applies best fit start

offset values for each transmit channel

message scenario defined in the onboard

message scheduler table.

ar_define_messages_from_txt_file Defines a set of scheduled ARINC

429 messages supplied from a text file.

ar_define_messages_from_xml_file Defines a set of scheduled ARINC

429 messages supplied from an XML file.

ar_define_msg Defines a scheduled ARINC 429 messages.

ar_define_msg_block Defines a block of scheduled ARINC 429

messages.

ar_modify_msg Modifies an existing ARINC 429 message

already defined for periodic transmission.

ar_modify_msg_block Modifies a block of ARINC 429 messages

already defined for periodic transmission.

ar_put_429_message Places a single message in the specified

ARINC 429 transmit buffer.

ar_put_573_frame Places a specified number of ARINC 573

data words in the transmit buffer.

ar_putword Places a single message in the specified

ARINC 429 transmit buffer.

ar_putblock Places multiple messages in a single

ARINC 429 transmit buffer.

ar_putblock_multi_chan Places multiple messages in multiple

ARINC 429 transmit buffers.

ar_read_message_schedule_table_entry Returns the contents of the

specified block of message scheduler entries

ar_read_message_schedule_table_entry Returns the contents of the

specified message scheduler entry

Application Programming Interface API Routines - Summary

CEI-x30-SW Software User's Manual 61

Timer-related Routines

ar_get_time Retrieves the current hardware reference

time based on the selected timer mode.

ar_get_timercntl Retrieves the current value of the OS timer.

ar_reset_timercnt Resets the internal timer/time-tag reference

to zero.

ar_set_timerrate Assigns the CEI-x30 compatible timer

resolution for use with ar_get_time() and

any ARINC 429 receive data routines

returning 32-bit time-tag values.

ar_set_time Sets the internal clock/timer or IRIG time

generator to an application supplied value.

Information and Status Routines

ar_get_base_addr Retrieves a pointer to the base address of the

address space allocated to the specified

device.

ar_get_boardname Returns a string description of the specified

device.

ar_get_boardtype Retrieves the target device configuration.

ar_get_error Retrieves a message string associated with a

given error status code.

ar_get_rx_channel_status Reports the current buffer state of the

specified ARINC 429 receive channel.

ar_get_status Retrieves the combined state of each receive

FIFO status register Data Available bit.

ar_num_rchans Retrieves the number of receive channels

supplied by the CEI-x30 device.

ar_num_xchans Retrieves the number of transmit channels

supplied by the CEI-x30 device.

Utility Routines

ar_clr_rx_count Resets the counter of received messages for

the specified receive channel.

Application Programming Interface API Routines - Summary

CEI-x30-SW Software User's Manual 62

ar_convert_time_to_string Converts a standard CEI-x30 64-bit time

value to character string.

ar_convert_1553_time_to_string Converts a multiprotocol, 1553 channel

synchronized time value to character string.

ar_execute_bit Verifies the CEI-x30 operational state

through various data wrap and timer tests.

ar_get_rx_count Returns the number of messages received

for the specified receive channel.

ar_hw_interrupt_buffer_read Returns the contents of the API maintained

interrupt buffer entries.

ar_interrupt_queue_read Provides host access to read the device

interrupt queue.

ar_set_isr_function Provides the method for the host application

to define a custom interrupt service routine.

ar_set_multithread_protect Enable/disable multithread access protection

to all API routines accessing the hardware

interface of the device.

ar_set_preload_config Defines the process and thread setup for the

calling application.

ar_sleep Suspends the calling thread for a specified

number of milliseconds.

ar_wait Blocks execution of the calling thread for

the specified number of seconds.

ar_version Retrieves the current API software version

for the CEI-x30 API, in a string format.

Application Programming Interface AR_ASSIGN_SCHEDULER_START_OFFSETS

CEI-x30-SW Software User's Manual 63

AR_ASSIGN_SCHEDULER_START_OFFSETS

CEI_INT32 ar_assign_scheduler_start_offsets (CDEV_BOARD_TYPE

board)

This routine determines the appropriate start offset values for each

transmit channel message scenario as a best estimate to avoid rate skew on

the respective channel. It first reads all defined messages from the

message scheduler table (any message having a non-zero rate attribute),

determines the appropriate start offset value for all messages on a channel-

by-channel basis, and then updates the respective start offset values in the

table.

This routine should be called immediately following the last invocation of

AR_DEFINE_MSG or AR_DEFINE_MSG_BLOCK, and must be called

prior to the invocation of AR_GO, (I.E. the Global Enable must be

disabled). The transmit channel bus speed for all channels referenced in

the message scheduler table entries must also be assigned prior to calling

this routine.

To assign start offset values to a scheduled message scenario prior to the

invocation of AR_DEFINE_MSG or AR_DEFINE_MSG_BLOCK, see

the Start Offset Assistant utility.

The start offset values defined by this routine do not account for bus timing issues and/or
message rate skew due to bursts of aperiodic messages invoked by the host application.

All start offset values assigned assume a continuous transmission of all messages
defined in the message scheduler table.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_FAILURE Message processing is enabled on the board.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Notes:

Return Value

Arguments

Application Programming Interface AR_BOARD_TEST

CEI-x30-SW Software User's Manual 64

AR_BOARD_TEST

CDEV_API_RET_TYPE ar_board_test (CDEV_BOARD_TYPE board,

CDEV_PARM_SSI_TYPE testType)

This routine performs a single message internal or external wrap test on

each matched ARINC 429 transmit/receive channel pair. On successful

completion of the wrap test, the board is initialized to the default state via

invocation of AR_INITIALIZE_DEVICE.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized or invalid board value was

provided.

ARS_MEMWRERR The SRAM test write/read/verify failed.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern

mismatch.

ARS_WRAP_FLUSH_FAIL Unexpected data from an external source

was received during wrap test execution.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE testType (input) Type of test to execute. Valid

values for this parameter are:

 INTERNAL_WRAP (4)

 EXTERNAL_WRAP (5)

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_BYPASS_WRAP_TEST

CEI-x30-SW Software User's Manual 65

AR_BYPASS_WRAP_TEST

CDEV_API_RET_TYPE ar_bypass_wrap_test (CDEV_BOARD_TYPE

board, CDEV_PARM_SSI_TYPE bypass)

This routine defines an internal flag used to control the invocation of the

AR_BOARD_TEST routine during execution of AR_OPEN. The routine

AR_BOARD_TEST will perform a single-message internal wrap test for

each matching ARINC 429 transmit/receive channel pair. The default

state of this internal flag is ON, indicating no internal wrap test is executed

during the board/API initialization process.

This routine should be invoked with the bypass parameter set to AR_OFF

if you wish the API to perform an internal wrap test as part of the

board/API initialization process. Note that if AR_OPEN is invoked with

any ARINC 429 receive channel connected to an actively transmitting

LRU, execution of AR_BOARD_TEST may return a false failure status

indication.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was supplied.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CEI_INT16 bypass (input) Bypass flag controlling execution of

the internal wrap test when the routine

AR_OPEN is invoked. Valid values for this

parameter are:

 AR_ON (7) bypass internal test

 AR_OFF (8) execute internal test

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_CLR_RX_COUNT

CEI-x30-SW Software User's Manual 66

AR_CLR_RX_COUNT

CEI_VOID ar_clr_rx_count (CDEV_BOARD_TYPE board, CEI_INT16

channel)

This routine resets the API-tracked count of ARINC data words receive by

the specified channel to zero. The CEI-x30 device maintains a count of

ARINC messages received over the interface for each channel since the

device was initialized. When this routine is invoked, the API saves the

current count, to be used as the most recent reset reference and subtracted

from the device count when the count value is requested by

AR_GET_RX_COUNT.

None

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CEI_UINT32 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less

than the installed receive channel count.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_CLOSE

CEI-x30-SW Software User's Manual 67

AR_CLOSE

CDEV_API_RET_TYPE ar_close (CDEV_BOARD_TYPE board)

This routine releases all resources acquired during the initialization of the

specified device. Once this routine has been executed, invocation of other

API routines results in the return of an invalid status.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_DRIVERFAIL Windows device driver failed to close the

session with the device.

ARS_INT_ISR Failed to relinquish the interrupt resources

ARS_ERR_SH_MEM_OBJ Failed to relinquish the shared memory

resource in a multi-process application

configuration

ARS_FAILURE Under Windows only, indicates a failure to

access the low-level driver library.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_CHANNEL_CONFIGURATION_FROM_XML_FILE

CEI-x30-SW Software User's Manual 68

AR_CHANNEL_CONFIGURATION_FROM_XML_FILE

CDEV_API_RET_TYPE ar_channel_configuration_from_xml_file

(pCEI_CHAR pcCfgFileName, CDEV_BOARD_TYPE cintBrdIdx)

This routine assigns the state of the following channel configuration

attributes from the application supplied XML-based channel configuration

file generated via the AutoConfig ARINC utility:

 Buffer Enable

 Bit Rate

 Parity Check/Generation

 Receive Buffering Mode

 Receive Internal Wrap

 Transmit Protocol Error Injection

See the AutoConfig ARINC User’s Manual for a description of the

acceptable Channel Configuration XML file format.

ARS_NORMAL Routine execution was successful.

ARS_BADLOAD The specified file not found.

ARS_INVBOARD An uninitialized board or invalid

cint16BrdIdx value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_FAILURE Invalid configuration file format.

ARS_INVHARVAL Invalid configuration file channel value.

ARS_INVHARCMD Invalid configuration file attribute entry.

pCEI_CHAR pcCfgFileName (input) The complete path and file name

defining the channel configuration file to be

referenced by this routine. A valid file name

suffix can only be “.xml” for a channel

configuration XML file.

CDEV_BOARD_TYPE cintBrdIdx (input) Device to access. Valid

range is 0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_CONFIG_CHANNEL_FROM_TXT_FILE

CEI-x30-SW Software User's Manual 69

AR_CONFIG_CHANNEL_FROM_TXT_FILE

CDEV_API_RET_TYPE ar_config_channels_from_txt_file

(CDEV_BOARD_TYPE BoardIdx, pCEI_CHAR cfgFileName)

This routine assigns the state of the following channel configuration

attributes from the application supplied text-based channel configuration

file generated via the AutoConfig ARINC utility:

 Buffer Enable

 Bit Rate

 Parity Check/Generation

 Receive Buffering Mode

 Receive Internal Wrap

 Transmit Protocol Error Injection

See the AutoConfig ARINC User’s Manual for a description of the

acceptable Channel Configuration text file format.

ARS_NORMAL Routine execution was successful.

ARS_BADLOAD The specified file not found.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_FAILURE Invalid configuration file designation or

format.

ARS_INVHARCMD Invalid configuration file attribute entry.

CDEV_BOARD_TYPE BoardIdx (input) Device to access. Valid

range is 0-127.

pCEI_CHAR cfgFileName (input) The complete path and file name

defining the channel configuration file to be

referenced by this routine. A valid file name

suffix can only be “.txt” for a channel

configuration text file.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_CONVERT_1553_TIME_TO_STRING

CEI-x30-SW Software User's Manual 70

AR_CONVERT_1553_TIME_TO_STRING

CEI_VOID ar_convert_1553_time_to_string (CDEV_BOARD_TYPE

board, CDEV_PARM_SSI_TYPE displayFormat,

pAR_TIMETAG_TYPE timeIn, pCEI_CHAR timeString)

This routine should be used for conversion of any ARINC 429 message

time-stamp or board timer value with any multiprotocol board when the

time-tag mode is set to AR_TIMETAG_SYNC_1553_CHn (1-4) via the

API routine AR_SET_DEVICE_CONFIG with the option

ARU_RX_TIMETAG_MODE.

This routine invokes the BusTools/1553-API time conversion routine

BusTools_TimeGetFmtString to convert the MIL-STD-1553 channel-

specific synchronized time value provided in the timeIn structure to a

character string representation of date/time. The format of the conversion

should be based on the active display format for the specified 1553

channel, acquired via invocation of the API routine

AR_GET_DEVICE_CONFIG for the respective 1553 channel with an

option of ARU_1553_TIME_TAG_DISPLAY. The format type returned

from that invocation should be provided in the displayFormat parameter of

this routine invocation. The supplied time format (LSB resolution) is a

fixed one nanosecond resolution with this conversion routine.

none.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE displayFormat (input) Format for returned

string acquired as documented in the

description above.

pAR_TIMETAG_TYPE timeIn (input) Source 64-bit time structure

pCEI_CHAR timeString (output) Pointer to destination

text string

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_CONVERT_TIME_TO_STRING

CEI-x30-SW Software User's Manual 71

AR_CONVERT_TIME_TO_STRING

CEI_VOID ar_convert_time_to_string (CDEV_BOARD_TYPE board,

CDEV_PARM_SSI_TYPE displayFormat, pAR_TIMETAG_TYPE

timeIn, pCEI_CHAR timeString)

This routine converts the time value provided in the timeIn structure to a

character string representation of date/time, format based on what is

specified via the displayFormat parameter. The supplied time format

(LSB resolution) must be specified in the timeIn structure member

timeTagFormat, representing the resolution of the respective timeTag

member data.

none.

CDEV_BOARD_TYPE board board (input) Device to access. Valid

range is 0-127.

CDEV_PARM_SSI_TYPE displayFormat (input) Format for returned

string:

AR_TD_REL_MIDNIGHT Relative to Midnight Format and

AR_TD_IRIG Full IRIG Format, defined as

 "(DDD)hh:mm:ss.uuuuuu"

AR_TD_DATE Date Format defined as

"(MM/DD)hh:mm:ss.uuuuuu"

pAR_TIMETAG_TYPE timeIn (input) Source 64-bit time structure

pCEI_CHAR timeString (output) Pointer to destination

text string

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_DEFINE_MESSAGES_FROM_TXT_FILE

CEI-x30-SW Software User's Manual 72

AR_DEFINE_MESSAGES_FROM_TXT_FILE

CDEV_API_RET_TYPE ar_define_messages_from_txt_file

(pCEI_CHAR cfgFileName)

This routine defines a series of ARINC 429 messages for periodic

retransmission at the specified rate from the supplied text scheduled

message definition file generated by the AutoConfig ARINC utility.

See the AutoConfig ARINC User’s Manual for a description of the

acceptable Scheduled Message Definition text file format.

ARS_NORMAL Routine execution was successful.

ARS_BADLOAD The specified file not found.

ARS_INVBOARD An uninitialized board or invalid board

value was provided in the text file.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_FAILURE The number of entries requested exceeds the

available number of remaining table entries

on a referenced board.

ARS_INVHARCMD Invalid message scheduler attribute entry

was detected in the text file.

pCEI_CHAR cfgFileName (input) The complete path and file name

defining the scheduled message definition

file to be referenced by this routine. A valid

file name suffix can only be “.txt” for a

scheduled message definition text file.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_DEFINE_MESSAGES_FROM_XML_FILE

CEI-x30-SW Software User's Manual 73

AR_DEFINE_MESSAGES_FROM_XML_FILE

CDEV_API_RET_TYPE ar_define_messages_from_xml_file

(pCEI_CHAR pcSMFileName)

This routine defines a series of ARINC 429 messages for periodic

retransmission at the specified rate from the supplied XML scheduled

message definition file generated by the AutoConfig ARINC utility.

See the AutoConfig ARINC User’s Manual for a description of the

acceptable Scheduled Message Definition XML file format.

ARS_NORMAL Routine execution was successful.

ARS_BADLOAD The specified file not found.

ARS_INVBOARD An uninitialized board or invalid board

value was provided in the text file.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_FAILURE The number of entries requested exceeds the

available number of remaining table entries

on a referenced board.

ARS_INVHARCMD Invalid message scheduler attribute entry

was detected in the XML file.

pCEI_CHAR pcSMFileName (input) The complete path and file name

defining the scheduled message definition

file to be referenced by this routine. A valid

file name suffix can only be “.xml” for a

scheduled message definition XML file.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_DEFINE_MSG

CEI-x30-SW Software User's Manual 74

AR_DEFINE_MSG

CDEV_API_RET_TYPE ar_define_msg (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_SSI_TYPE rate,

CDEV_PARM_USI_TYPE start, CDEV_PARM_SI_TYPE data)

This routine defines a 32-bit ARINC 429 message for periodic

retransmission at the specified rate. Once defined, the message rate,

content, or assigned channel may be altered through AR_MODIFY_MSG.

Any positive value between 0 and 2047 is the unique message scheduler

table entry index assigned to this message.

ARS_FAILURE Indicates the routine encountered an

uninitialized board, an invalid board/channel

parameter value, or a full message scheduler

table.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) Channel on which to transmit this

message. The valid range is 0 to one less

than the number of installed transmit

channels.

CDEV_PARM_SSI_TYPE rate (input) Periodic transmission rate,

defined in milliseconds by default. For

backward compatibility to the CEI-x20 tick-

timer message rate method, when

AR_SET_TIMERRATE has been executed

to simulate the CEI-x20 tick-timer resolution

assignment within the CEI-x30 API, the rate

and start parameters is scaled to the

specified tick-timer resolution.

CDEV_PARM_USI_TYPE start (input) Offset, (in milliseconds), from the

start of CEI-x30 device message processing

at which this message will begin its initial

periodic transmission.

CDEV_PARM_SI_TYPE data (input) The 32-bit ARINC 429 message

to transmit.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_DEFINE_MSG_BLOCK

CEI-x30-SW Software User's Manual 75

AR_DEFINE_MSG_BLOCK

CDEV_API_RET_TYPE ar_define_msg_block (CEI_INT32

numberOfEntries, pAR_SCHEDULED_MSG_ENTRY_TYPE

messageEntry)

This routine defines a series of 32-bit ARINC 429 messages for periodic

retransmission at the specified rate. Once defined, the message rate,

content, or assigned channel for any individual message scheduler table

entry within this same structure may be altered via invocation of

AR_MODIFY_MSG_BLOCK.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid channel parameter value.

ARS_INVHARVAL Message scheduling is not supported on the

specified channel.

ARS_FAILURE Message scheduler table full indication.

CEI_INT32 numberOfEntries (input) The number of entries to define

from the subsequent structure pointer

parameter, messageEntry.

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry (input)

 Array of structures of message definition content, defined as follows:

unsigned long messageIndex The unique message scheduler table entry

index assigned to this message. Upon

completion of this routine, the messageIndex

structure member will have been updated to

reflect the message scheduler table index

assigned to the respective message. Valid

range is 0-2047.

unsigned long board Device to access. Valid range is 0-127.

unsigned long channel Channel on which to transmit this message.

The valid range is 0 to one less than the

number of installed transmit channels.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_DEFINE_MSG_BLOCK

CEI-x30-SW Software User's Manual 76

unsigned long rate Periodic transmission rate, defined in

milliseconds by default. For backward

compatibility to the CEI-x20 tick-timer

message rate method, when

AR_SET_TIMERRATE has been executed

to simulate the CEI-x20 tick-timer resolution

assignment within the CEI-x30 API, the rate

and start parameters will be scaled to the

specified tick-timer resolution.

unsigned long start Offset, (in milliseconds), from the start of

CEI-x30 device message processing at

which this message will begin its initial

periodic transmission.

unsigned long txCount The total number of times this message will

be transmitted. The constant value

ARU_SCHED_MSG_INFINITE

(0xFFFFFFFF) indicates infinite

transmission of this message is requested.

unsigned long data The 32-bit ARINC 429 message to transmit.

Application Programming Interface AR_ENH_LABEL_FILTER

CEI-x30-SW Software User's Manual 77

AR_ENH_LABEL_FILTER

CEI_INT32 ar_enh_label_filter (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_USI_TYPE label,

CDEV_PARM_USI_TYPE sdi, CDEV_PARM_USI_TYPE essm,

CDEV_PARM_SSI_TYPE action)

This routine supports the assignment of both a single entry in the enhanced

label filter table for the specified receive channel and channel-wide field

definitions for the entire channel filter table. The CEI-x30 device

enhanced label filtering feature supports the ability to both filter ARINC

429 messages and generate a hardware interrupt based on reception of a

message matching the combined 8-bit label value, 2-bit SDI value, and 3-

bit Enhanced SSM value.

Bit Field Name ESSM SDI Label

Message Bit Field Location 30 29 28 9 8 7 6 5 4 3 2 1 0

This routine should be used exclusive of the use of the legacy API routine
AR_LABEL_FILTER, as any filter table value assigned with one routine supersedes a
previous assignment with another.

Label Filtering

Once message reception filtering has been enabled for a specified

channel/label/sdi/essm combination, data received with matching bit field

values will be discarded until label filtering for that specified message has

been disabled.

Interrupt Generation

Once interrupt generation filtering has been enabled for a specified

channel/label/sdi/essm combination, data received with matching bit field

values induce an entry in the CEI-x30 device interrupt queue. If the device

hardware interrupt has been enabled by invoking

AR_SET_DEVICE_CONFIG with the option

ARU_HW_INTERRUPT_ENABLE set to AR_ON, the device generates a

PCI Interrupt to be serviced by the default interrupt service routine

provided with the API or a custom ISR assigned by the host application.

The label filtering feature is disabled for all labels/sdi/essm combinations

by default. Label filtering changes are effective immediately on

completion of this routine.

ARS_NORMAL Routine execution was successful.

Syntax

Description

Note:

Return Value

Application Programming Interface AR_ENH_LABEL_FILTER

CEI-x30-SW Software User's Manual 78

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVHARVAL Invalid channel parameter value.

ARS_INVARG Invalid label, sdi, essm, or action parameter

value.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) Channel label filter table this

routine is to access. The valid range is 0 to

one less than the installed receive channel

count.

CDEV_PARM_USI_TYPE label (input) The label of interest. Valid

range is 0-255. Also valid is

ARU_ALL_LABELS (511), which invokes

the action for all labels.

CDEV_PARM_USI_TYPE sdi (input) The SDI field value of interest.

Valid range is 0-3. Also valid is

ARU_ALL_SDI (4), which invokes the

action for all SDI entries for the specified

label.

CDEV_PARM_USI_TYPE essm (input) The ESSM field value of

interest. Valid range is 0-7. Also valid is

ARU_ALL_ESSM (8), which invokes the

action for all ESSM entries for the specified

label.

CDEV_PARM_SSI_TYPE action (input) Enable or disable filtering

action for this table entry. Valid values are:

FILTER_SEQUENTIAL 0x10 If CLEAR add the respective

message to the sequential receive buffer; if SET

filter the respective message from the sequential

receive buffer.

FILTER_SNAPSHOT 0x20 If CLEAR add the respective

message to the snapshot buffer; if SET filter the

respective message from the snapshot buffer.

FILTER_INTERRUPT 0x40 If CLEAR does nothing; if SET,

receipt of the respective message creates a receive

channel index entry in the device’s interrupt queue

and if enabled, generates a PCI interrupt.

Arguments

Application Programming Interface AR_EXECUTE_BIT

CEI-x30-SW Software User's Manual 79

AR_EXECUTE_BIT

CDEV_API_RET_TYPE ar_execute_bit (CDEV_BOARD_TYPE board,

CDEV_PARM_SSI_TYPE testType)

This routine performs hardware test functionality normally associated with

board-level Built-In-Test (BIT). Testing ranges from a full SRAM

memory test to verification of ARINC 429 message wrap on

transmit/receive channel pair on the specified device.

This routine bypasses execution and returns a failure status if you invoke it when multi-
process execution is enabled by AR_SET_PRELOAD_CONFIG and multiple processes are
attached to a single board.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern

mismatch.

ARS_WRAP_FLUSH_FAIL Unknown external data received during

wrap test execution.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid testType parameter value.

ARS_FAILURE Timer-deviation test failed, or multi-process

execution is enabled.

ARS_RX_BIT_CMD_ERROR - RAR15-XMC only – Receiver BIT

command register write/read/verify failure.

ARS_RX_BIT_CH01_ERROR to ARS_RX_BIT_CH32_ERROR

 RAR15-XMC only – Receiver “nn” BIT

loopback execution failure, where a valid

range for “nn” is 1 to 32.

Syntax

Description

Note:

Return Value

Application Programming Interface AR_EXECUTE_BIT

CEI-x30-SW Software User's Manual 80

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE testType (input) Type of test to execute,

defined as follows:

AR_BIT_BASIC_STARTUP (0) invokes a basic device

initialization to a reset state (all buffers are flushed and

channel configurations reset); however, the device firmware is

not reloaded or restarted.

AR_BIT_FULL_STARTUP (1) invokes device initialization, a

full, destructive SRAM memory test, and an internal wrap test

of all matched transmit/ receive channels, (regardless of prior

invocation of the API routine AR_BYPASS_WRAP_TEST).

The duration of this test is approximately 17 seconds.

AR_BIT_PERIODIC (2) invokes a short, non-destructive

SRAM memory test and a timer-deviation test, providing

verification of the basic health status of the device.

AR_BIT_INT_LOOPBACK (3) invokes an internal wrap test of

all matched transmit/receive channels.

AR_BIT_EXT_LOOPBACK (4) invokes an external wrap test

of all matched transmit/receive channels.

AR_BIT_PARTIAL_SRAM (8) invokes a short destructive test

of select, unused SRAM locations

AR_BIT_FULL_SRAM (9) invokes a destructive test of all

SRAM locations.

AR_BIT_RX_LOOPBACK (10) exclusive to the RAR15-

XMC products, invokes the Receiver BIT loopback functional

test.

AR_BIT_SELECT_SRAM_MIN to

 AR_BIT_SELECT_SRAM_MAX (100 to 1123)

invokes a destructive test of a select block of SRAM, parsed

into 1024 blocks of 512 locations each.

Arguments

Application Programming Interface AR_GET_573_FRAME

CEI-x30-SW Software User's Manual 81

AR_GET_573_FRAME

CDEV_API_RET_TYPE ar_get_573_frame (CDEV_BOARD_TYPE

board, pCEI_INT32 numberWords, pCEI_UINT16 arincData)

This function retrieves numberWords of ARINC 573/717 data from the

ARINC 573/717 receive channel. If any data is available, the actual

number of words received is indicated in the return value of numberWords.

If auto-synchronization is configured for the ARINC 573/717 channel, this

function will search the receive buffer for any occurrence of the first sub-

frame sync word (defined via invocation of AR_SET_573_CONFIG with

the item set to ARU_573_SYNC_WORD1) and return the specified

number of words of frame data following the instance of that sync word.

With automatic synchronization selected and the full frame size specified

in numberWords, this function will wait until the full frame is received and

copied to the destination array. The acquisition of an entire ARINC

573/717 frame may require up to four seconds to complete.

ARS_NODATA No frame data was available.

ARS_GOTDATA At least one ARINC 573/717 data word has

been retrieved.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVHARVAL ARINC 573 support is not available on

device.

ARS_INVARG Invalid numberWords or arincData

parameter.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

pCEI_UINT32 numberWords (input/output) As an input this specifies

the number of words to retrieve from the

receive buffer. As an output this indicates

how many words were retrieved from the

receive buffer, less than or equal to the input

value of numberWords.

pCEI_UINT16 arincData (output) The address that is to receive the

frame data. The format of each data word in

the ARINC 573/717 frame is defined as

follows:

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_573_FRAME

CEI-x30-SW Software User's Manual 82

15 14 13 – 12 11 - 0

sync word RESERVED subframe data

sync word: indicates this word was detected as a sync word, where a

value of 1 indicates sync word and 0 indicates data word.

subframe: identifies the sub-frame assignment for this word, where 1

indicates sub-frame 1, 2 indicates sub-frame 2, 3 indicates sub-frame 3,

and 0 indicates sub-frame 4.

data: the 12-bit ARINC 573/717 data.

Application Programming Interface AR_GET_429_MESSAGE

CEI-x30-SW Software User's Manual 83

AR_GET_429_MESSAGE

CDEV_API_RET_TYPE ar_get_429_message (CDEV_BOARD_TYPE

board, CDEV_CHAN_TYPE channel, CDEV_PARM_SSI_TYPE

waitState, CDEV_PARM_VOID_PTR_TYPE data,

CDEV_PARM_VOID_PTR_TYPE timetag)

This routine retrieves the most recent ARINC 429 data and 32-bit time-tag

from the specified channel. If no data is present in the receiver buffer, this

routine attempts to retrieve data for up to one-half second. If no data is

present after one-half second, a time-out status is returned. If no wait is

specified and no data is available, the return status is so indicated.

ARS_GOTDATA An ARINC 429 message and its time-tag

have been retrieved.

ARS_CHAN_TIMEOUT The receive buffer was empty (if waitState is

AR_ON).

ARS_NODATA The receive buffer was empty (if waitState is

AR_OFF).

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVHARVAL Channel is not available on the device.

ARS_INVARG A NULL data parameter value was

provided.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_429_MESSAGE

CEI-x30-SW Software User's Manual 84

CDEV_PARM_SSI_TYPE waitState (input) Whether or not to wait for

data. A value of AR_ON specifies to wait ½

second for data; a value of AR_OFF

specifies to return if no data is immediately

available.

CDEV_PARM_VOID_PTR_TYPE data (output) The address that is to

receive the data. The returned ARINC 429

data is always in normal ARINC format.

CDEV_PARM_VOID_PTR_TYPE timetag (output) The address that is

to receive the 32-bit time-tag associated with

the data, (resolution is programmable). If

the merged receive mode is active for the

specified channel, the upper five bits of the

32-bit time-tag word will contain the receive

channel number on which the data was

received. If the timetag parameter is NULL,

time-tag information will not be provided.

Application Programming Interface AR_GET_BASE_ADDR

CEI-x30-SW Software User's Manual 85

AR_GET_BASE_ADDR

pCEI_UINT32 ar_get_base_addr (CDEV_BOARD_TYPE board)

This routine returns the driver-acquired virtual base address for the PCI

memory region for the host interface of the specified device. This routine

should be invoked only after successfully invoking AR_LOADLSV.

Any positive value exceeding $2000 is the driver-acquired virtual base

address for the host interface PCI memory region of the specified device.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETBLOCK

CEI-x30-SW Software User's Manual 86

AR_GETBLOCK

CEI_INT32 ar_getblock (CEI_UINT32 board, CEI_UINT32 channel,

CEI_INT32 maxMessages, CEI_INT32 offset, pCEI_INT32 actualCount,

pCEI_INT32 data, pCEI_INT32 timeTags);

This routine retrieves all of the available ARINC messages from the

requested receive channel buffer and copies them to the desired

destination. If the timeTags parameter is not NULL, the 32-bit time-tag

data associated with each retrieved message is also copied. The

actualCount, data, and timeTags parameters are only when Return Value

is ARS_GOTDATA or ARS_BAD_MESSAGE.

The channel value passed to this routine corresponds to the ARINC 429

receive channel index, starting with zero. If that value exceeds the 429

receive channel count and an ARINC 717 receiver exists, the ARINC 717

receiver is used as the designated channel buffer.

ARS_GOTDATA Message(s) and time-tag(s) were retrieved.

ARS_NODATA The receive buffer was empty.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; message(s) were

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_INVARG Invalid maxMessages, actualCount, or data

parameter was encountered.

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less

than the installed receive channel count.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETBLOCK

CEI-x30-SW Software User's Manual 87

CEI_INT32 maxMessages (input) The number of messages to retrieve.

CEI_INT32 offset unused parameter, retained for legacy API

support

pCEI_INT32 actualCount (output) The number of messages retrieved.

pCEI_INT32 data (output) Array to store 32-bit ARINC data.

The format of the 32-bit value is dependent

on the protocol assigned to the respective

receive channel:

ARINC 429/575 Data Format

31 30 – 10 9 - 8 7 - 0

Parity Indication or
ARINC Data MSB

ARINC Data
SDI bits or ARINC Data

bits 0-1
ARINC Label (MSB

– LSB)

ARINC 717 Data Format

31 – 16 15 14 13 - 12 11 – 0

Unused Sync Indication Unused Sub-frame Identification Data Word

 See the Channel Buffer Word 4 - Receive

description for more details.

pCEI_INT32 timeTags (output) Array to store 32-bit message time-

tags; can be set to NULL if time-tags are not

desired.

Application Programming Interface AR_GETBLOCK_T

CEI-x30-SW Software User's Manual 88

AR_GETBLOCK_T

CEI_INT32 ar_getblock_t (CEI_UINT32 board, CEI_UINT32 channel,

CEI_INT32 maxMessages, pCEI_INT32 actualCount, pCEI_UINT32

msgChan, pCEI_INT32 data, pCEI_INT32 timeTagMsw, pCEI_INT32

timeTagLsw)

This routine retrieves the available ARINC 429 messages from the

requested receive channel buffer and copies them to the desired

destination. If the msgChan, timeTagMsw, and timeTagLsw parameters

are not NULL, the receive channel and 64-bit time-tag data associated with

each retrieved message are also copied. The actualCount, msgChan, data,

timeTagMsw and timeTagLsw parameters are only valid when Return

Value is ARS_GOTDATA or ARS_BAD_MESSAGE.

ARS_GOTDATA Message(s) and time-tag(s) were retrieved.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; message(s) were

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_NODATA The receive buffer was empty.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_INVARG Invalid maxMessages, actualCount, or data

parameter was encountered.

CEI_UINT32 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_UINT32 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less

than the installed receive channel count.

CEI_INT32 maxMessages (input) The number of messages to retrieve.

pCEI_INT32 actualCount (output) The number of messages retrieved.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETBLOCK_T

CEI-x30-SW Software User's Manual 89

pCEI_UINT32 msgChan (output) Array to store the receiver channel

indication, necessary for actual receive

channel determination when using the

Merged Receive Mode

pCEI_INT32 data (output) Array to store 32-bit ARINC 429

data.

pCEI_INT32 timeTagMsw (output) Array to store the most significant

32-bits of the 64-bit time-tag data.

pCEI_INT32 timeTagLsw (output) Array to store the least significant

32-bits of the 64-bit time-tag data.

Application Programming Interface AR_GET_BOARDNAME

CEI-x30-SW Software User's Manual 90

AR_GET_BOARDNAME

pCEI_CHAR ar_get_boardname (CDEV_BOARD_TYPE board,

pCEI_CHAR boardName)

This routine returns a character string describing the board name for the

specified device. It should only be invoked after successful invocation of

AR_LOADLSV.

NULL An uninitialized board or invalid board

value was provided.

For any valid detected board, the return value is a character string

description of board associated with the supplied board value:

 “AMC-A30”

 “CEI-430”

 “CEI-430A”

 “CEI-530”

 “CEI-830”

 “R830RX”

 “RAR-CPCI”

 “RAR-EC”

 “RAR-PCIE”

 “RAR15-XMC”

 “RCEI-830X820”

 ”RAR-XMC”

 ”RCEI-830A”

 "RAR-MPCIE"

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

pCEI_CHAR boardName (output) If a valid board is detected and this

parameter is not NULL, the character

description of that board is copied to the

location referenced by this parameter. A

minimum of 12 bytes of allocation is

required for the destination array.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_BOARDTYPE

CEI-x30-SW Software User's Manual 91

AR_GET_BOARDTYPE

CDEV_API_RET_TYPE ar_get_boardtype (CDEV_BOARD_TYPE

board)

This routine returns the API/device type for the specified device. It should

only be invoked after successful invocation of AR_LOADLSV.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

For any value less than ARS_INVBOARD, the return value indicates the

type of board associated with the supplied board value:

 CEI-830 (19)

 CEI-430 (21)

 AMC-A30 (22)

 CEI-530 (26)

 R830RX (27)

 RAR-CPCI (28)

 RAR-EC (29)

 RAR-PCIE (30)

 CEI-430A (31)

 RCEI-830X820 (34)

 RAR-XMC (35)

 RCEI-830A (36)

 RAR-MPCIE (38)

 RAR15-XMC (119)

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_CHANNEL_INDEX_INFO

CEI-x30-SW Software User's Manual 92

AR_GET_CHANNEL_INDEX_INFO

CDEV_API_RET_TYPE ar_get_channel_index_info

(CDEV_BOARD_TYPE board, AR_CHANNEL_INDEX_INFO_TYPE *

chan_index_info)

This routine returns the returns the CEI-x30 channel indexing

configuration for the specified board, specifically for use with boards

supporting programmable channel configurations. It should only be

invoked after successful invocation of AR_LOADLSV.

This routine is typically used during application initialization of a

programmable channel board configuration to both determine

programmable channel index values and subsequently assign those

programmable channels as either a receiver or transmitter (reference the

ar_set_device_config ARU_CONFIG_PROGRAMMABLE_CHAN

option).

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

AR_CHANNEL_INDEX_INFO_TYPE * chan_index_info

 (output) Channel index information

structure. This structure defines the board’s

channel configuration and transmit/receive

indexing information. The structure type is

defined as follows:

unsigned long num_channels The total number of channels installed on

the board, where programmable channels are

counted as a single channel.

unsigned long chan_type[256] An array of ARINC429 channel type values

associated with each of the 256 virtual

channels allocated on in CEI-x30 device

host interface, indexed from 0 to 255.

Supported channel types are defined as:

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_CHANNEL_INDEX_INFO

CEI-x30-SW Software User's Manual 93

 AR_CHAN_TYPE_429_RX (0) indicates

this channel is implemented as a fixed

receiver in the host interface.

 AR_CHAN_TYPE_429_TX (1) indicates

this channel is implemented as a fixed

transmitter in the host interface.

 AR_CHAN_TYPE_429_RX_OR_TX (2)

indicates this channel is implemented as a

programmable transmitter or receiver in the

host interface

 AR_CHAN_TYPE_UNDEFINED (255)

indicates this channel is either not assigned

or assigned to a channel type other than

ARINC 429 (e.g. Discrete Input/Output).

unsigned long chan_rx_index[256] The receive channel index values

assigned to corresponding chan_type array

entries assigned a value of either

AR_CHAN_TYPE_429_RX or

AR_CHAN_TYPE_429_RX_OR_TX.

unsigned long chan_tx_index[256] The transmit channel index values

assigned to corresponding chan_type array

entries assigned a value of either

AR_CHAN_TYPE_429_TX or

AR_CHAN_TYPE_429_RX_OR_TX.

.

Application Programming Interface AR_GET_CONFIG

CEI-x30-SW Software User's Manual 94

AR_GET_CONFIG

CEI_INT32 ar_get_config (CDEV_BOARD_TYPE board,

CDEV_PARM_SSI_TYPE item)

This routine returns the active state of API information, board level

settings, and limited ARINC 429 channel configuration register bit fields.

It is provided for backward compatibility to CEI-x20 based applications.

The routine AR_GET_DEVICE_CONFIG is the desired routine for

acquiring information regarding channel and board-level configuration.

See the ARU_* definitions in the file CDEV_API.H for the most current

list of parameter options supported by this routine and the values

associated with those definitions.

If the requested item is ARU_RX_CHnn_BIT_RATE (500-531), where nn

is the receiver channel (01 - 32), this routine returns the current value of

the channel configuration register baud rate field:

AR_HIGH (0) high rate (100Kbs)

AR_LOW (1) low rate (12.5Kbs)

Any other value is returned as a frequency value in Hertz.

If the requested item is ARU_TX_CHnn_BIT_RATE (700-731), where nn

is the transmitter channel (01 - 32), this routine returns the current value of

the channel configuration register baud rate field:

AR_HIGH (0) high rate (100Kbs)

AR_LOW (1) low rate (12.5Kbs)

Any other value is returned as a frequency value in Hertz.

If the requested item is ARU_RX_CHnn_PARITY (900-931), where nn is

the receiver channel (01 - 32), this routine returns the current state of the

specified receiver channel configuration register parity field:

AR_ODD (0) receiver parity check enabled

AR_OFF (8) receiver parity check disabled

If the requested item is ARU_TX_CHnn_PARITY (1100-1131), where nn

is the transmitter channel (01 - 32), this routine returns the current state of

the specified transmitter channel configuration register parity field:

AR_ODD (0) odd transmitter parity

AR_EVEN (1) even transmitter parity

If the requested item is ARU_TX_CHnn_SHUT_OFF (1700-1731), where

nn is the transmitter channel (01 - 32), this routine returns the current state

of the specified transmitter channel configuration register transmit disable

field:

Syntax

Description

Return Value

Application Programming Interface AR_GET_CONFIG

CEI-x30-SW Software User's Manual 95

AR_ON (7) external transmission is disabled

AR_OFF (8) external transmission is enabled

If the requested item is ARU_TX_CHnn_HB_INJ (3300-3331), where nn

is the transmitter channel (01 - 32), this routine returns the current state of

the specified transmitter channel configuration register high-bit error

injection field:

AR_ON (7) 33-bit transmission is enabled

AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_LB_INJ (3500-3531), where nn

is the transmitter channel (01 - 32), this routine returns the current state of

the specified transmitter channel configuration register low-bit error

injection field:

AR_ON (7) 31-bit transmission is enabled

AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_GAP_INJ (3700-3731), where

nn is the transmitter channel (01 - 32), this routine returns the current state

of the specified transmitter channel configuration register message gap

error injection field:

AR_ON (7) 3-bit message gap is used

AR_OFF (8) standard 4-bit message gap is used

If the requested item is ARU_CONFIGURATION (21), this routine

returns the value of the CEI-x30 Board Configuration, defined as follows:

CEIDEV_CONFIG_CEI830 (7) CEI-830

CEIDEV_CONFIG_CEI430 (8) CEI-430

CEIDEV_CONFIG_AMCA30 (9) AMC-A30

CEIDEV_CONFIG_CEI530 (10) CEI-530

CEIDEV_CONFIG_R830RX (11) R830RX

CEIDEV_CONFIG_RAR_CPCI (12) RAR-CPCI

CEIDEV_CONFIG_RAR_EC (13) RAR-EC

CEIDEV_CONFIG_RAR_PCIE (14) RAR-PCIE

CEIDEV_CONFIG_CEI430A (15) CEI-430A

CEIDEV_CONFIG_RAR15XT (17) RAR15-XMC

CEIDEV_CONFIG_R830X820 (18) RCEI-830X820

CEIDEV_CONFIG_RAR_XMC (19) RAR-XMC

CEIDEV_CONFIG_RCEI830A (20) RCEI-830A

CEIDEV_CONFIG_RAR_MPCIE (21) RAR-MPCIE

If the requested item is ARU_RX_TIMETAG_MODE (440), this routine

returns a value representing the currently selected timer/time-tag source

and resolution. This value indicates the resolution of any timer-read or

receive data time-tag value obtained via the API, and is defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

AR_TIMETAG_INT_20USEC_32BIT (3)

Application Programming Interface AR_GET_CONFIG

CEI-x30-SW Software User's Manual 96

AR_TIMETAG_INT_MSEC_32BIT (4)

AR_TIMER_X20_COMPAT_32BIT (5)

AR_TIMETAG_SYNC_1553_CH1 (11)

AR_TIMETAG_SYNC_1553_CH2 (12)

AR_TIMETAG_SYNC_1553_CH3 (13)

AR_TIMETAG_SYNC_1553_CH4 (14)

A value of AR_TIMETAG_EXT_IRIG_64BIT indicates the source

is the external IRIG receiver, if connected; otherwise, if the IRIG

signal is not internally wrapped this selection would be invalid.

Any 1553 synchronized time value indicates the timer source is the

respective 1553 channel on a Multi-protocol device.

All other values represent various timer/time-tag LSB resolution

values based on the internal CEI-x30 device timer.

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38), this

routine returns the currently selected Snapshot Buffer storage mode:

ARU_LABEL_ONLY (0) messages stored based on label

ARU_LABEL_WITH_SDI (1) messages stored based on the

combined label and SDI field values

If the requested item is ARU_IRIG_WRAP_ENABLE (441), this routine

returns the current state of the IRIG Receiver internal wrap feature:

AR_ON (7) IRIG Receiver is patched into the IRIG Generator

AR_OFF (8) IRIG Receiver is configured for external IRIG source

If the requested item is ARU_IRIG_AVAILALBE (445), this routine

returns TRUE if IRIG-B support is available, FALSE if it is not.

If the requested item is ARU_IRIG_CALIBRATED (447), this routine

verifies the ability to capture consecutive IRIG time samples at a one

second interval. If this results in a return status of FALSE (0), the IRIG

signal is not consistent; otherwise, a return value of TRUE (1) indicates

the signal is valid, or an error status (any value greater than 1) indicates a

failure occurred.

If the requested item is not on this list or in the list of valid items for

AR_GET_DEVICE_CONFIG, this routine will return a value of

ARS_INVARG.

If the requested item is not valid for the specified device, this routine

returns a value of ARS_INVHARCMD.

If the specified board is invalid or has not been initialized, this routine

returns ARS_INVBOARD.

If access to the Board Lock timed-out or failed, this routine returns

ARS_BOARD_MUTEX.

Application Programming Interface AR_GET_CONFIG

CEI-x30-SW Software User's Manual 97

If the requested item is ARU_HW_FPGA_TEMPERATURE (453), this

routine returns the current temperature of the RAR-PCIE or RAR-XMC

FPGA core, in units of “milli”degrees Celsius.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE item (input) Control function about which to

return information:

ARU_RX_CH01_BIT_RATE –

ARU_RX_CH32_BIT_RATE receiver 1 – 32 bit rate selection.

ARU_TX_CH01_BIT_RATE –

ARU_TX_CH32_BIT_RATE transmitter 1 – 32 bit rate selection.

ARU_RX_CH01_PARITY –

ARU_RX_CH32_PARITY receiver 1 – 32 parity state.

ARU_TX_CH01_PARITY –

ARU_TX_CH32_PARITY transmitter 1 – 32 parity state.

ARU_TX_CH01_SHUT_OFF –

ARU_TX_CH32_SHUT_OFF transmitter 1 – 32 enable state.

ARU_TX_CH01_LB_INJ – transmitter 1 – 32 low bit error

ARU_TX_CH32_LB_INJ enable state.

ARU_TX_CH01_HB_INJ – transmitter 1 – 32 high bit error

ARU_TX_CH32_HB_INJ enable state.

ARU_TX_CH01_GAP_INJ – transmitter 1 – 32 message

ARU_TX_CH32_GAP_INJ gap error enable state.

ARU_IRIG_AVAILABLE IRIG Receiver installed state.

ARU_IRIG_WRAP_ENABLE IRIG Receiver internal wrap state.

ARU_IRIG_CALIBRATED IRIG signal validity.

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode.

ARU_FW_VERSION Hardware Version reg. value.

ARU_CONFIGURATION configuration of the device.

ARU_RX_TIMETAG_MODE active timer/time-tagging mode.

ARU_HW_FPGA_TEMPERATURE read FPGA temperature

Arguments

Application Programming Interface AR_GET_DATA

CEI-x30-SW Software User's Manual 98

AR_GET_DATA

CDEV_API_RET_TYPE ar_get_data (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE * channel, pCEI_UINT32 data, pCEI_UINT32

timeTagLo, pCEI_UINT32 timeTagHi)

This routine retrieves the next unread message and 64-bit time-tag from

the specified receive channel. If it successfully returns data, there may or

may not be more data in the buffer. It means only that there was at least

one message in the buffer. Subsequent calls are required to determine if

more data words are available in the buffer. If this routine returns a status

value of ARS_NODATA, the buffer is empty.

If the specified channel was configured for merged mode operation along

with other receive channels, this routine returns the next unread message

from the merged receive buffer and indicate on which channel the message

was received via the channel parameter.

ARS_GOTDATA A message and time-tag have been received.

ARS_NODATA The receive buffer was empty.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVHARVAL The channel is not available on the device.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE * channel (input/output) As an input, specifies

which hardware receive channel this routine

is to access, (see the description of the

Hardware Channel Assignments in the CEI-

x30 Product Line Hardware Manual for the

list of valid hardware receive channel

values) . As an output, indicates the receive

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_DATA

CEI-x30-SW Software User's Manual 99

channel number on which the data was

received (for merged-mode channel

reporting).

pCEI_UINT32 data (output) Address that is to receive the data.

pCEI_UINT32 timeTagLo (output) Address that is to receive the least-

significant 32 bits of the 64-bit time-tag

associated with the data, (resolution of the

combined time-tag words is 1 sec).

pCEI_UINT32 timeTagHi (output) Address that is to receive the most-

significant 32 bits of the 64-bit time-tag

associated with the data, (resolution of the

combined time-tag words is 1 sec).

Application Programming Interface AR_GET_DATA_XT

CEI-x30-SW Software User's Manual 100

AR_GET_DATA_XT

CDEV_API_RET_TYPE ar_get_data (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE * channel, pCEI_UINT32 data,

pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread message and the associated time-tag

structure from the specified receive channel. If it successfully returns data,

there may or may not be more data in the buffer. It means only that there

was at least one message in the buffer. Subsequent calls are required to

determine if more data words are available in the buffer. If this routine

returns a status value of ARS_NODATA, the buffer is empty.

If the specified channel was configured for merged mode operation along

with other receive channels, this routine returns the next unread message

from the merged receive buffer with a reference to which channel received

the message via the channel parameter.

ARS_GOTDATA A message and time-tag have been received.

ARS_NODATA The receive buffer was empty.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVHARVAL The channel is not available on the device.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE * channel (input/output) As an input, specifies

which hardware receive channel this routine

is to access, (see the description of the

Hardware Channel Assignments in the CEI-

x30 Product Line Hardware Manual for the

list of valid hardware receive channel

values) . As an output, indicates the receive

channel number on which the data was

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_DATA_XT

CEI-x30-SW Software User's Manual 101

received (for merged-mode channel

reporting).

pCEI_UINT32 data (output) Address that is to receive the data.

pAR_TIMETAG_TYPE timeTagRef (input)

 The timeTagRef structure member

timeTagFormat specifies the desired format

of the time-tag value returned in the timeTag

structure member. Valid values are:

AR_TIMETAG_EXT_IRIG_64BIT 0

AR_TIMETAG_INT_USEC_64BIT 1

AR_TIMETAG_HOST_USEC_64BIT 2

AR_TIMETAG_INT_20USEC_32BIT 3

AR_TIMETAG_INT_MSEC_32BIT 4

AR_TIMETAG_SYNC_1553_CH1 11

AR_TIMETAG_SYNC_1553_CH2 12

AR_TIMETAG_SYNC_1553_CH3 13

AR_TIMETAG_SYNC_1553_CH4 14

AR_TIMETAG_USE_PROGRAMMED_MODE 99

 (output)

 The address that is to receive the time-tag

data structure associated with the data.

Application Programming Interface AR_GET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 102

AR_GET_DEVICE_CONFIG

CDEV_API_RET_TYPE ar_get_device_config (CDEV_BOARD_TYPE

board, CDEV_CHAN_TYPE channel, CDEV_PARM_SSI_TYPE item,

CDEV_PARM_SSI_PTR_TYPE value)

This routine returns the state of the device configuration register attribute

based on the combined item/value parameters. It is designed to support all

ARINC 429 channel configuration register bit fields available to the

device.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG The item argument value is not supported by

this API routine.

ARS_INVHARVAL The item argument value is not supported by

this device configuration.

ARS_HW_CONSISTENCY Indicates the board is compatible with the

CEI-x30 Enhanced Operations (Version 2.00

API or later).

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed channel count for the

specified channel type. For board-level

configuration items, this parameter is not

used.

CDEV_PARM_SSI_TYPE item (input) configuration register or board

level attribute for which to return the current

state:

ARU_RX_PARITY receive channel parity enable.

ARU_RX_BITRATE receive channel bit rate.

ARU_RX_FIFO_ENABLE receive channel enable.

ARU_RX_DISABLE receive channel enable.

ARU_RECV_MODE receiver internal wrap.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 103

ARU_RX_MERGED_MODE receiver merged mode enable.

ARU_RX_MSG_SIZE_24BIT receiver 24-bit message mode.

ARU_TX_BITRATE transmit channel bit rate.

ARU_TX_PARITY transmit channel parity select.

ARU_TX_FIFO_ENABLE transmit channel enable.

ARU_TX_DISABLE transmit channel transceiver disable.

ARU_TX_BIT_ERROR transmit channel bit error enable.

ARU_TX_GAP_ERROR transmit channel gap error enable.

ARU_TX_MSG_SIZE_24BIT transmitter 24-bit message mode.

ARU_FAST_SLEW_RATE transmit channel slew rate select.

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode.

ARU_IRIG_WRAP_ENABLE IRIG receiver internal wrap state.

ARU_IRIG_AVAILALBE IRIG receiver installed state.

ARU_IRIG_OUTPUT_ENABLE R830RX IRIG Tx state.

ARU_IRIG_INPUT_TIME IRIG received sample value.

ARU_IRIG_CALIBRATED IRIG signal validity.

ARU_DEVICE_DISABLE CEI-430 device disabled state.

ARU_DISCRETE_IN discrete input state.

ARU_DIFFERENTIAL_IN differential input state.

ARU_DIFFERENTIAL_OUT differential output enable state.

ARU_RX_TIMETAG_MODE active timer/time-tagging mode.

ARU_CHAN_COUNT_429 ARINC 429 Tx channel count.

ARU_CHAN_COUNT_573 ARINC 573/717 channel count.

ARU_CHAN_COUNT_DISC discrete I/O channel count.

ARU_CHAN_COUNT_DIFF differential I/O channel count.

ARU_RX_FIFO_COUNT receive FIFO buffer fill count.

ARU_TX_FIFO_COUNT transmit FIFO buffer fill count.

ARU_RX_MSG_COUNT receive message count.

ARU_TX_MSG_COUNT transmit message count.

ARU_FW_VERSION current programmed firmware.

ARU_HW_ENHANCE_CHECK current device BAR2 size.

ARU_HW_INTERRUPT_ENABLE current PCI interrupt state

ARU_HW_1PT0V_PWR_SUPPLY RAR-PCIE 1.0V supply value

ARU_HW_2PT5V_PWR_SUPPLY RAR-PCIE 2.5V supply value

ARU_SPECIAL_PROGRAMMABLE_CONFIG detect pgm chan cfg

 Options for the item parameter only

available with multiprotocol boards:

ARU_1553_CHANNEL_INITIALIZED 1553 chan init flag.

ARU_1553_TIME_TAG_MODE 1553 chan time mode.

ARU_1553_TIME_TAG_DISPLAY 1553 chan time string

 conversion format.

CDEV_PARM_SSI_PTR_TYPE value (output) state of the

configuration register attribute:

If the requested item is ARU_RX_FIFO_ENABLE (16),

ARU_RX_DISABLE (9), or ARU_TX_FIFO_ENABLE (17), this routine

Application Programming Interface AR_GET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 104

will return the current value of the specified channel configuration register

FIFO Enable field:

AR_ON (7) FIFO operation enabled

AR_OFF (8) FIFO operation disabled

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE

(2), this routine will return the current value of the specified channel

configuration register baud rate field:

ARU_SPEED_HIGH (0) high rate (100Kbs)

ARU_SPEED_LOW (1) low rate (12.5Kbs)

Any other value is translated as a non-standard bus speed value

divisor for the 16MHz device clock reference. This value and the

respective baud rate may be interpreted using the following formula:

 Baud Rate = 16,000,000 / (Value+2)

If the requested item is ARU_RX_PARITY (3), this routine returns the

current state of the specified receive channel configuration register parity

field:

AR_ ON (7) receiver parity check enabled

AR_OFF (8) receiver parity check disabled

If the requested item is ARU_TX_PARITY (4), this routine returns the

current state of the specified transmitter channel configuration register

parity field:

ARU_PARITY_ODD (0) odd transmitter parity

ARU_PARITY_EVEN (1) even transmitter parity

ARU_PARITY_NONE (2) transmitter parity disabled

If the requested item is ARU_RECV_MODE (5), this routine returns the

current state of the specified receive channel configuration register Internal

Wrap Enable field:

AR_WRAP_ON (0) internal wrap reception enabled

AR_WRAP_OFF (1) internal wrap reception disabled

If the requested item is ARU_RX_MERGED_MODE (18), this routine

returns the current state of the specified receive channel configuration

register Merge Mode enable field:

AR_ON (7) Merged Mode enabled

AR_OFF (8) Merged Mode disabled

If the requested item is ARU_ RX_MSG_SIZE_24BIT (459), this routine

returns the current state of the specified receive channel configuration

register 24-bit Message Size enable field:

AR_ON (7) ARINC 585 24-bit protocol enabled

AR_OFF (8) ARINC 429/575 32-bit protocol enabled

Application Programming Interface AR_GET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 105

If the requested item is ARU_TX_DISABLE (10), this routine returns the

current state of the specified receive channel configuration register

Transmit Disable field:

AR_ON (7) external transmission disabled

AR_OFF (8) external transmission enabled

If the requested item is ARU_TX_BIT_ERROR (6), this routine returns

the current state of the specified transmitter channel configuration register

Bit Count Hi and Low fields:

AR_LO (0) Bit Count Low enabled

AR_HI (1) Bit Count High enabled

AR_OFF (8) both Bit Count Low and High disabled

If the requested item is ARU_TX_GAP_ERROR (8), this routine returns

the current state of the specified transmitter channel configuration register

Gap Error field:

AR_ON (7) Gap Error enabled

AR_OFF (8) Gap Error disabled

If the requested item is ARU_FAST_SLEW_RATE (323), this routine

returns the current state of the specified transmitter channel configuration

register Slew Rate field:

AR_ON (7) Fast Slew Rate selected (1.5 µsec rise time)

AR_OFF (8) Slow Slew Rate selected (10 µsec rise time)

If the requested item is ARU_ TX_MSG_SIZE_24BIT (460), this routine

returns the current state of the specified transmit channel configuration

register 24-bit Message Size enable field:

AR_ON (7) ARINC 585 24-bit protocol enabled

AR_OFF (8) ARINC 429/575 32-bit protocol enabled

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38), this

routine returns the current state of the device snapshot storage mode:

ARU_LABEL_ONLY (0) message storage on a label basis

ARU_LABEL_WITH_SDI (1) message storage on a combined

 label/SDI basis.

If the requested item is ARU_IRIG_AVAILALBE (445), this routine

returns TRUE if IRIG-B support is available, FALSE if it is not.

If the requested item is ARU_IRIG_OUTPUT_ENABLE (26), this routine

returns the enable state of the R830RX IRIG Generator Enable:

AR_ON (7) IRIG output is enabled

AR_OFF (8) IRIG output is disabled

If the requested item is ARU_IRIG_INPUT_TIME (27), this routine

returns the most recent received IRIG received sample value.

If the requested item is ARU_IRIG_WRAP_ENABLE (441), this routine

returns the current state of the IRIG Receiver internal wrap feature:

Application Programming Interface AR_GET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 106

AR_ON (7) IRIG Receiver is patched into the IRIG Generator

AR_OFF (8) IRIG Receiver is configured for external IRIG source

If the requested item is ARU_IRIG_CALIBRATED (447), this routine

verifies the ability to capture consecutive IRIG time samples at a one

second interval. If this results in a return status of FALSE (0), the IRIG

signal is not consistent; otherwise, a return value of TRUE (1) indicates

the signal is valid, or an error status (any value greater than 1) indicates a

failure occurred.

If the requested item is ARU_DISCRETE_IN (14), this routine returns the

current state of the specified discrete I/O channel:

AR_HI (1) the discrete input is High

AR_LO (0) the discrete input is Low

If the requested item is ARU_DIFFERENTIAL_IN (22), this routine

returns the current state of the specified differential I/O channel:

AR_HI (1) the differential input is High

AR_LO (0) the differential input is Low

If the requested item is ARU_ DIFFERENTIAL _OUT (23), this routine

returns the enable state of the specified differential I/O channel:

AR_ON (7) the differential output enabled

AR_OFF (8) the differential output disabled

If the requested item is ARU_RX_TIMETAG_MODE (440), this routine

returns a value representing the currently selected timer/time-tag source

and resolution. This value indicates the resolution of any timer-read or

receive data time-tag value obtained via the API, and is defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

AR_TIMETAG_INT_20USEC_32BIT (3)

AR_TIMETAG_INT_MSEC_32BIT (4)

AR_TIMER_X20_COMPAT_32BIT (5)

AR_TIMETAG_SYNC_1553_CH1 (11)

AR_TIMETAG_SYNC_1553_CH2 (12)

AR_TIMETAG_SYNC_1553_CH3 (13)

AR_TIMETAG_SYNC_1553_CH4 (14)

A value of AR_TIMETAG_EXT_IRIG_64BIT indicates the source

is the external IRIG receiver, if connected; otherwise, if the IRIG

signal is not internally wrapped this selection would be invalid.

Any 1553 synchronized time value indicates the timer source is the

respective 1553 channel on a Multi-protocol device.

All other values represent various timer/time-tag LSB resolution

values based on the internal CEI-x30 device timer.

Application Programming Interface AR_GET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 107

If the requested item is ARU_CONFIGURATION (21), this routine

returns the value of the CEI-x30 Board Configuration, defined as follows:

CEIDEV_CONFIG_CEI830 (7) CEI-830

CEIDEV_CONFIG_CEI430 (8) CEI-430

CEIDEV_CONFIG_AMCA30 (9) AMC-A30

CEIDEV_CONFIG_CEI530 (10) CEI-530

CEIDEV_CONFIG_R830RX (11) R830RX

CEIDEV_CONFIG_RAR_CPCI (12) RAR-CPCI

CEIDEV_CONFIG_RAR_EC (13) RAR-EC

CEIDEV_CONFIG_RAR_PCIE (14) RAR-PCIE

CEIDEV_CONFIG_CEI430A (15) CEI-430A

CEIDEV_CONFIG_RAR15XT (17) RAR15-XMC

CEIDEV_CONFIG_R830X820 (18) RCEI-830X820

CEIDEV_CONFIG_RAR_XMC (19) RAR-XMC

CEIDEV_CONFIG_RCEI830A (20) RCEI-830A

CEIDEV_CONFIG_RAR_MPCIE (21) RAR-MPCIE

Intended for use only with the RAR-XMC and RAR15-XMC board

configurations, if ARU_SPECIAL_PROGRAMMABLE_CONFIG (456)

is the supplied item value and this routine returns any value other than

zero, this is an indication the CEI-x30 Board Configuration contains a

special programmable transmit/receive channel I/O configuration, defined

as one of the following:

RAR_XMC_16P16_SPECIAL_CFG (5) This value indicates the

RAR-XMC configuration contains 16 fixed receive channels and 16

transmit/receive programmable channels (where the programmable

transmit channels are referenced as transmitters 0-15 while

programmable receiver channels are referenced as receivers 16-31).

RAR_XMC_P16_SPECIAL_CFG (14) This value indicates the

RAR-XMC configuration contains a fixed 16-channel

transmit/receive programmable configuration (all channels are

programmable as either transmitters or receivers).

RAR_XMC_102_SPECIAL_CFG (15) This value indicates the

RAR-XMC configuration contains 10 fixed receive channels and

2fixed transmit channels.

RAR15_XMC_SPECIAL_CFG (16) This value indicates the

RAR15-XMC combo card configuration contains at least 10 fixed

receive channels and from 2 to 8 transmit/receive programmable

channels.

If the requested item is ARU_DEVICE_DISABLE (39), this routine

returns the current value of the CEI-430 Global Enable Register – Device

Disabled bit.

Application Programming Interface AR_GET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 108

If the requested item is ARU_CHAN_COUNT_429 (448), this routine

returns the ARINC 429 transmit channel count detected on the board.

If the requested item is ARU_CHAN_COUNT_573 (449), this routine

returns the ARINC 573/717 transmit channel count detected on the board.

If the requested item is ARU_CHAN_COUNT_ DISC (450), this routine

returns the discrete output channel count detected on the board.

If the requested item is ARU_CHAN_COUNT_ DIFF (451), this routine

returns the differential output channel count detected on the board.

If the requested item is ARU_TX_FIFO_COUNT (19), this routine returns

the current buffer count of messages in the specified ARINC 429 transmit

FIFO awaiting transmission.

If the requested item is ARU_RX_FIFO_COUNT (28), this routine returns

the current buffer count of messages in the ARINC 429 receive FIFO

available to be read by the host application.

If the requested item is ARU_RX_MSG_COUNT (35), this routine returns

the number of messages received on this channel since the board was last

initialized.

If the requested item is ARU_TX_MSG_COUNT (36), this routine returns

the number of messages transmitted on this channel since the board was

last initialized.

If the requested item is ARU_FW_VERSION (20), this routine returns the

current programmed firmware.

If the requested item is ARU_HW_ENHANCE_CHECK (30), this routine

returns either ARS_NORMAL to indicate the board is compatible with the

CEI-x30 Enhanced Operations (Version 2.00 API), or

ARS_HW_CONSISTENCY to indicate it is not.

If the requested item is ARU_HW_INTERRUPT_ENABLE (29), this

routine returns the current state of the PCI Interrupt Enable bit:

AR_ON (7) PCI Interrupts are enabled

AR_OFF (8) PCI Interrupts are disabled

If the requested item is ARU_HW_1PT0V_PWR_SUPPLY (454), this

routine returns the current level of the RAR-PCIE on-board 1.0V supply in

millivolts.

If the requested item is ARU_HW_2PT5V_PWR_SUPPLY (455), this

routine returns the current level of the RAR-PCIE on-board 2.5V supply in

millivolts.

Application Programming Interface AR_GET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 109

If the requested item is ARU_1553_CHANNEL_INITIALIZED (10000),

this routine returns the initialization state of the specified 1553 channel,

indicating whether or not the channel is available for time-tag

synchronization:

TRUE (1) specified 1553 channel has been initialized

FALSE (0) specified 1553 channel has not been initialized

If the requested item is ARU_1553_TIME_TAG_MODE (10006), this

routine returns the current BusTools/1553-API programmed time-tag mode

for the specified 1553 channel, (reference the routine description for

BusTools_TimeTagMode in the BusTools/1553-API Reference Manual

for a description of the various time-tag mode options).

If the requested item is ARU_1553_TIME_TAG_DISPLAY (10008), this

routine returns the current BusTools/1553-API programmed time-tag

string conversion display format, (reference the routine description for

BusTools_TimeTagMode in the BusTools/1553-API Reference Manual

for a description of the various time-tag string conversion options).

Application Programming Interface AR_GET_573_CONFIG

CEI-x30-SW Software User's Manual 110

AR_GET_573_CONFIG

CDEV_API_RET_TYPE ar_get_573_config (CDEV_BOARD_TYPE

board, CDEV_PARM_SSI_TYPE item, CDEV_PARM_SI_PTR_TYPE

value)

This routine returns the state of the device configuration register attribute

based on the combined item/value. It is designed to support the ARINC

573/717 configuration register attributes available to the device.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG The item argument value is not supported by

this API routine.

ARS_INVHARVAL The item argument value is not supported by

this device configuration.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_PARM_SSI_TYPE item (input) Configuration item about which

to return information:

ARU_RECV_MODE receiver internal wrap.

ARU_RX_BITRATE receive channel bit rate.

ARU_RX_FIFO_ENABLE receive channel enable.

ARU_RX_MERGED_MODE receiver merged mode enable

ARU_573_RX_AUTO_DETECT receiver frame auto-detect enable.

ARU_573_RX_BPRZ_SELECT receiver BPRZ/HBP selection.

ARU_TX_BITRATE transmit channel bit rate.

ARU_TX_FIFO_ENABLE transmit channel enable.

ARU_573_TX_BPRZ_SELECT transmitter BPRZ encoder enable.

ARU_573_TX_HBP_SELECT transmitter HBP encoder enable.

ARU_573_TX_SLEW_RATE transmitter slew rate select.

ARU_TX_FIFO_COUNT transmit FIFO buffer fill count.

ARU_573_SYNC_WORD1 receiver auto-detect sync word 1.

ARU_573_SYNC_WORD2 receiver auto-detect sync word 2.

ARU_573_SYNC_WORD3 receiver auto-detect sync word 3.

ARU_573_SYNC_WORD4 receiver auto-detect sync word 4.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_573_CONFIG

CEI-x30-SW Software User's Manual 111

CDEV_PARM_SI_PTR_TYPE value (output) The address that

receives the state of the item requested:

If the requested item is ARU_RECV_MODE (5), this routine returns the

current state of the ARINC 573/717 receive channel Internal Wrap Enable:

AR_WRAP_ON (0) internal wrap reception enabled

AR_WRAP_OFF (1) internal wrap reception disabled

If the requested item is ARU_RX_FIFO_ENABLE (16) or

ARU_TX_FIFO_ENABLE (17), then this routine will return the current

value of the ARINC 573/717 channel FIFO Enable:

AR_ON (7) FIFO operation enabled

AR_OFF (8) FIFO operation disabled

If the requested item is ARU_RX_MERGED_MODE (18), this routine

returns the current state of the ARINC 573/717 receive channel Merge

Mode Enable:

AR_ON (7) Merge mode enabled

AR_OFF (8) Merge mode disabled

If the requested item is ARU_573_RX_AUTO_DETECT (301), this

routine returns the current state of the ARINC 573/717 receive channel

Auto-synchronization Enable:

AR_ON (7) ARINC 573/717 frame auto-detection enabled

AR_OFF (8) ARINC 573/717 frame auto-detection disabled

If the requested item is ARU_573_RX_BPRZ_SELECT (302), this routine

returns the current state of the ARINC 573/717 receive channel Encoding

Enable:

AR_ON (7) ARINC 573/717 BPRZ encoding enabled

AR_OFF (8) ARINC 573/717 HBP encoding enabled

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE

(2), this routine returns the current state of the ARINC 573/717 channel

Baud Rate/Subframe Size selection (ranging from 0 to 7):

ARU_573_RATE_SIZE_384_32 384 bps, 32 word sub-frame

ARU_573_RATE_SIZE_768_64 768 bps, 64 word sub-frame

ARU_573_RATE_SIZE_1536_128 1536 bps, 128 word sub-frame

ARU_573_RATE_SIZE_3072_256 3072 bps, 256 word sub-frame

ARU_573_RATE_SIZE_6144_512 6144 bps, 512 word sub-frame

ARU_573_RATE_SIZE_12288_1024 12288 bps, 1024 word sub-frame

ARU_573_RATE_SIZE_24576_2048 24576 bps, 2048 word sub-frame

ARU_573_RATE_SIZE_49152_4096 49152 bps, 4096 word sub-frame

Application Programming Interface AR_GET_573_CONFIG

CEI-x30-SW Software User's Manual 112

If the requested item is ARU_573_TX_BPRZ_SELECT (313), this routine

returns the current state of the ARINC 573/717 transmit channel Encoding

Enable:

AR_ON (7) ARINC 573/717 BPRZ encoding enabled

AR_OFF (8) ARINC 573/717 BPRZ encoding disabled

If the requested item is ARU_573_TX_HBP_SELECT (314), this routine

returns the current state of the ARINC 573/717 transmit channel Encoding

Enable:

AR_ON (7) ARINC 573/717 HBP encoding enabled

AR_OFF (8) ARINC 573/717 HBP encoding disabled

If the requested item is ARU_573_TX_SLEW_RATE (305) this routine

returns the current state of the ARINC 573/717 transmit channel Slew Rate

selection:

ARU_573_TX_SLEW_1PT5 (1) 1.5µsec rise time

ARU_573_TX_SLEW_10PT0 (0) 10.0µsec rise time

If the requested item is ARU_TX_FIFO_COUNT (19), this routine returns

the current buffer count of messages in the ARINC 717 transmit FIFO

awaiting transmission.

If the requested item is ARU_573_SYNC_WORD1 (307),

ARU_573_SYNC_WORD2 (308), ARU_573_SYNC_WORD3 (309), or

ARU_573_SYNC_WORD4 (310), this routine returns the 12-bit value for

the respective receiver sub-frame sync word.

Application Programming Interface AR_GET_ERROR

CEI-x30-SW Software User's Manual 113

AR_GET_ERROR

pCEI_CHAR ar_get_error (CDEV_API_RET_TYPE status)

Most of the API routines return status values, a majority of which indicate

either success or some form of an error condition. When supplied with

such an error value, this routine returns a pointer to a string describing the

error.

Review the section, “Return Status Values”, for the current list of possible

error codes and their explanations.

If the application intends to copy the string referenced via ar_get_error, a

minimum allocation of 512 characters is required.

A pointer to the error message character string.

CDEV_API_RET_TYPE status (input) a status value returned by any of

the API utilities.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETFILTER

CEI-x30-SW Software User's Manual 114

AR_GETFILTER

CEI_INT32 ar_getfilter (CEI_UINT32 board, CEI_UINT32 channel,

pCEI_CHAR filterTable)

This routine returns the contents of a single channel label filter table from

the device. Each receive channel has a separate section within the label

filter table, is used by the firmware to control FIFO storage of received

labels and generate hardware interrupts. Each element of the filter buffer

consists of a bit field defined for compatibility with the CEI-x20 product

line as follows:

FILTER_SEQUENTIAL 0x10 If CLEAR add label to Sequential receive buffer

FILTER_SNAPSHOT 0x20 If CLEAR add label to Snapshot receiver buffer

FILTER_INTERRUPT 0x40 If SET on reception insert the respective receive

channel tag (ranging from 64-95) in the interrupt queue and if

enabled generate a PCI interrupt.

The filter buffer for a single channel is defined as follows:

 filterTable[MAX_ESSM][MAX_SDI][MAX_LABEL]

and accessed as:

filterTable[eSSM][SDI][label]

where the bits of the ARINC word are split up as follows:

eSSM SDI label

30, 29, 28 9, 8 7, 6, 5, 4, 3, 2, 1, 0

To write an entry to the label interrupt and filter table, refer to the API

routines AR_ENH_LABEL_FILTER, AR_PUTFILTER, and

AR_LABEL_FILTER.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid channel or filterTable parameter.

Syntax

Description

Return Value

Application Programming Interface AR_GETFILTER

CEI-x30-SW Software User's Manual 115

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

pCEI_CHAR filterTable (input) Array to receive the contents of the

specified channel’s label filter table. This

array must have a minimum allocation of

8Kbytes.

Arguments

Application Programming Interface AR_GET_LABEL_FILTER

CEI-x30-SW Software User's Manual 116

AR_GET_LABEL_FILTER

CDEV_API_RET_TYPE ar_get_label_filter (CDEV_BOARD_TYPE

board, CDEV_PARM_USI_TYPE label)

This routine returns the active state of label filtering for the specified label

on each of the first sixteen installed receive channels.

Given the routine is supplied with a valid board and label value, the return

value indicates the active state of the specified label on each receive

channel through the respective bit state, where the label filter state on

receive channel zero (zero-referenced) is indicated via b0 as “1” to

indicate the label is filtered and “0” to indicate either the label is not

filtered or the receive channel is not installed. Subsequent bits in the value

indicate the label filter state for the respective receive channel.

A label is indicated to be “filtered” if the respective entry in the Label

Filter Table is defined to filter the label from either the Sequential (FIFO)

or Snapshot buffers.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_USI_TYPE label (input) Specifies which label to

query. Valid range is 0 to 255.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_LATEST

CEI-x30-SW Software User's Manual 117

AR_GET_LATEST

CEI_VOID ar_get_latest (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_USI_TYPE label,

CDEV_PARM_VOID_PTR_TYPE data, pCEI_CHAR seq_num)

In support of backward compatibility to previous ARINC product APIs,

this routine returns the latest ARINC 429 message received for the

specified channel/label combination from the snapshot buffer.

If the label parameter value requested is either 256 or the value

ARU_ALL_LABELS (511), this routine treats the data parameter as an

array reference and returns the most recent received ARINC message for

all 256 valid ARINC labels for the specified channel, in successive data

array elements. This function assumes that the caller has allocated at least

1024 bytes for data when used in this mode.

When using this routine, the host application should set the snapshot

storage mode to label field only, (see the documentation on the routine

AR_SET_DEVICE_CONFIG, for the configuration option

ARU_ACCESS_SNAPSHOT_BUFFER). This sets up the x30 device to

store snapshot data based on the label field value only, ignoring the SDI bit

field value.

If no message has been received for the specified channel/label since the

last initialization of the device, a data value of zero will be returned.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CDEV_PARM_USI_TYPE label (input) The label value of interest.

CDEV_PARM_VOID_PTR_TYPE data (output) Location to store 32-bit

ARINC data.

pCEI_CHAR seq_num (output) Unsupported legacy parameter.

Syntax

Description

Arguments

Application Programming Interface AR_GET_LATEST_T

CEI-x30-SW Software User's Manual 118

AR_GET_LATEST_T

CEI_INT32 ar_get_latest_t (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_USI_TYPE label,

pCEI_UINT32 data, TIME_TAG_TYPE * timeTag)

This routine returns the latest ARINC 429 message and time-stamp

received for the specified channel/label combination from the snapshot

buffer. When using this routine, the host application should set the

snapshot storage mode to label field only, (see the documentation on the

routine AR_SET_DEVICE_CONFIG, for the configuration option

ARU_ACCESS_SNAPSHOT_BUFFER). This sets up the x30 device to

store the ARINC message and time-stamp in the snapshot buffer based on

the label field value only, ignoring the SDI bit field value.

If no message has been received for the specified channel/label since the

last initialization of the device, a data value of zero is returned for the

message and time-stamp. If the supplied timeTag parameter is NULL, no

time-stamp information will be returned.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid label or null data parameter.

ARS_INVHARVAL Channel is not available on device.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CDEV_PARM_USI_TYPE label (input) The label value of interest.

pCEI_UINT32 data (output) Location to store ARINC message.

TIME_TAG_TYPE * timeTag (output) The address that is to receive the

64-bit message time-stamp, the format of

which is determined by the current API

time-tag format.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETNEXT

CEI-x30-SW Software User's Manual 119

AR_GETNEXT

CDEV_API_RET_TYPE ar_getnext (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_VOID_PTR_TYPE

destination)

This routine retrieves the next unread message from the specified receive

channel. If no message is present in the receiver FIFO buffer upon

invocation, this routine polls the buffer waiting for the presence of a

received message for up to one-half second. If no message is present after

one-half second, a time-out status is returned.

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received

during the time-out period.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid destination parameter.

ARS_INVHARVAL Channel is not available on device.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CDEV_PARM_VOID_PTR_TYPE destination (output) The address

that is to receive the message.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETNEXTT

CEI-x30-SW Software User's Manual 120

AR_GETNEXTT

CDEV_API_RET_TYPE ar_getnextt (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_VOID_PTR_TYPE

destination, CDEV_PARM_VOID_PTR_TYPE timetag)

This routine retrieves the next unread message and scaled 32-bit time-

stamp from the specified receive channel. If no message is present in the

receiver FIFO buffer when invoked this routine polls the buffer waiting for

the presence of a received message for up to one-half second. If no

message is present after one-half second, a time-out status is returned.

If the timetag parameter is not NULL, the 32-bit translation of the 64-bit

message time-stamp will be returned, scaled to the active legacy 32-bit

time-tag mode, (1 millisecond resolution by default).

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received

during the time-out period.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid destination parameter.

ARS_INVHARVAL Channel is not available on device.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CDEV_PARM_VOID_PTR_TYPE destination (output) The address

that is to receive the message.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETNEXTT

CEI-x30-SW Software User's Manual 121

CDEV_PARM_VOID_PTR_TYPE timetag (output) The address that is

to receive the 32-bit time-tag associated with

the data, (resolution is programmable). If

the merged receive mode is active for the

specified channel, the upper five bits of the

32-bit time-tag word contain the receive

channel number on which the data was

received.

Application Programming Interface AR_GETNEXT_XT

CEI-x30-SW Software User's Manual 122

AR_GETNEXT_XT

CDEV_API_RET_TYPE ar_getnext_xt (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, pCEI_UINT32 data,

pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread message and the associated time-tag

structure from the specified receive channel. If no message is present in

the receiver FIFO buffer when invoked, this routine polls the buffer

waiting for the presence of a received message for up to one-half second.

If no message is present after one-half second, a time-out status is returned.

If the timeTagRef parameter is not NULL, the time-tag structure containing

the message time-stamp will be returned.

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received

during the time-out period.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid data parameter.

ARS_INVHARVAL Channel is not available on device.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

pCEI_UINT32 data (output) The address that is to receive the

message.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETNEXT_XT

CEI-x30-SW Software User's Manual 123

pAR_TIMETAG_TYPE timeTagRef (input)

 The timeTagRef structure member

timeTagFormat specifies the desired format

of the time-tag value returned in the timeTag

structure member. Valid values are:

AR_TIMETAG_EXT_IRIG_64BIT 0

AR_TIMETAG_INT_USEC_64BIT 1

AR_TIMETAG_HOST_USEC_64BIT 2

AR_TIMETAG_INT_20USEC_32BIT 3

AR_TIMETAG_INT_MSEC_32BIT 4

AR_TIMETAG_SYNC_1553_CH1 11

AR_TIMETAG_SYNC_1553_CH2 12

AR_TIMETAG_SYNC_1553_CH3 13

AR_TIMETAG_SYNC_1553_CH4 14

AR_TIMETAG_USE_PROGRAMMED_MODE 99

 (output)

 The address that is to receive the time-tag

data structure associated with the message.

Application Programming Interface AR_GET_RX_CHANNEL_STATUS

CEI-x30-SW Software User's Manual 124

AR_GET_RX_CHANNEL_STATUS

CEI_UINT32 ar_get_rx_channel_status (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_SI_PTR_TYPE

channelStatus, CDEV_PARM_SI_PTR_TYPE messageCount)

This routine returns the current status of the specified receive channel

buffer. If either an ARINC 429 protocol error or buffer overflow bit was

set in the receive channel buffer status register, it is cleared on return from

this routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid channelStatus or messageCount

parameter.

ARS_INVHARVAL ARINC 429 channel is not available on the

device.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CDEV_PARM_SI_PTR_TYPE channelStatus (output) Location to

store the bitwise representation of the

current receiver buffer status bits. The

Status Register Bit assignments are defined

as follows:

 b0 - AR_BUFFER_MSG_AVAILABLE (1)

 Set indicates at least one message is ready to

read from the buffer. Clear indicates the

buffer is empty.

 b1 - AR_INVALID_MSG_DETECTED (2)

 Set indicates at least one ARINC 429

message protocol error was detected since

either this routine was previously invoked or

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_RX_CHANNEL_STATUS

CEI-x30-SW Software User's Manual 125

a message was last retrieved from the buffer.

Clear indicates no protocol error has been

encountered.

 b2 - AR_BUFFER_OVERFLOW_DETECTED (4)

 Set indicates the respective receive channel

encountered a message buffer overflow

since this routine was previously invoked.

Clear indicates no buffer overflow has been

encountered.

CDEV_PARM_SI_PTR_TYPE messageCount (output) Location to

store the number of messages currently

available in the respective receive buffer,

acquired from the respective receive channel

status register. This value will only be valid

if b0 in the channelStatus return value is set,

and has a valid range of 1 - 2047.

Application Programming Interface AR_GET_RX_COUNT

CEI-x30-SW Software User's Manual 126

AR_GET_RX_COUNT

CEI_UINT32 ar_get_rx_count (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel)

The device maintains a count of the number of ARINC data messages

received over the interface for each channel since the device was last

initialized (see AR_OPEN). This routine returns that number.

If the API routine AR_CLR_RX_COUNT has been invoked by the host

application prior to this routine’s invocation, the API logs the current value

of the message count and returns the difference between that value and the

value read from the device upon invocation.

Current count of ARINC messages received on the specified channel.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which receive channel

this routine is to access.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_SNAP_DATA

CEI-x30-SW Software User's Manual 127

AR_GET_SNAP_DATA

CEI_INT32 ar_get_snap_data (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_USI_TYPE label,

CDEV_PARM_USI_TYPE sdi, pCEI_UINT32 data)

This routine returns the latest ARINC 429 message received for the

specified channel/label combination from the snapshot buffer.

When using this routine, the host application should set the snapshot

storage mode to label/sdi storage, (see the documentation on the routine

AR_SET_DEVICE_CONFIG, for the configuration option

ARU_ACCESS_SNAPSHOT_BUFFER). This sets up the x30 device to

store snapshot data based on the label field value in combination with the

SDI bit field value.

If no message has been received for the specified channel/label since the

last initialization of the device, a data value of zero is returned for the

message.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid label, sdi,or null data parameter.

ARS_INVHARVAL Channel is not available on device.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CEI_UINT16 label (input) The label value of interest.

CEI_UINT16 sdi (input) The SDI value of interest.

pCEI_UINT32 data (output) Location to store 32-bit ARINC

data.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_STATUS

CEI-x30-SW Software User's Manual 128

AR_GET_STATUS

CEI_UINT32 ar_get_status (CDEV_BOARD_TYPE board,

CDEV_PARM_SSI_PTR_TYPE state)

This routine returns the state of the FIFO Data Available bit for up to 16

receivers in a bitwise 16-bit value.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_PTR_TYPE state (output) Location to store the

receiver FIFO status. The Status Register

Bit Assignments are defined as follows, ("1"

indicates Data Available, “0” indicates No

Data Available):

b0 - ARINC 429 Receiver 1

b1 - ARINC 429 Receiver 2

 …

b14 - ARINC 429 Receiver 15

b15 - ARINC 429 Receiver 16

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_STORAGE_MODE

CEI-x30-SW Software User's Manual 129

AR_GET_STORAGE_MODE

CDEV_API_RET_TYPE ar_get_storage_mode (CDEV_BOARD_TYPE

board, CDEV_PARM_SSI_PTR_TYPE mode)

This routine is designed to provide compatibility with the CEI-x20 ARINC

device API. It returns the current state of the API receive storage mode.

When the API receive storage mode is buffered, each receiver is assigned

an independent circular buffer for data storage (merged mode is disabled).

When the storage mode is merged, all receivers are set to enable merged

receive mode and data received on each is stored in the merged FIFO

buffer. Each receive data API routine processes the active storage mode

internally, acquiring data from the appropriate buffer. Since each receive

channel can be independently programmed to store data in buffered or

merged mode through AR_SET_DEVICE_CONFIG, this routine should

only be used in conjunction with the AR_SET_STORAGE_MODE

routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_PTR_TYPE mode (output) The address that is to

receive the state of the current API storage

mode. Valid return values for this parameter

are:

ARU_BUFFERED (0) buffered receive mode

ARU_MERGED (2) merged receive mode

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_TIME

CEI-x30-SW Software User's Manual 130

AR_GET_TIME

CDEV_API_RET_TYPE ar_get_time (CDEV_BOARD_TYPE board,

CDEV_PARM_SSI_TYPE format, pAR_TIMETAG_TYPE timeTag)

This routine returns the current time reference value scaled from either the

CEI-x30 device internal 64-bit timer, the most recently received IRIG

timer reference, or the specified 1553 channel (for multi-protocol boards),

as specified via the format parameter.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG An invalid format parameter value was

provided.

ARS_INVHARVAL IRIG or MIL-STD-1553 time format was

requested via the format parameter but is not

available on the specified device.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE format (input) Time format requested.

Valid options are:

AR_TIMETAG_EXT_IRIG_64BIT 0

AR_TIMETAG_INT_USEC_64BIT 1

AR_TIMETAG_HOST_USEC_64BIT 2

AR_TIMETAG_INT_20USEC_32BIT 3

AR_TIMETAG_INT_MSEC_32BIT 4

AR_TIMER_X20_COMPAT_32BIT 6

AR_TIMETAG_SYNC_1553_CH1 11

AR_TIMETAG_SYNC_1553_CH2 12

AR_TIMETAG_SYNC_1553_CH3 13

AR_TIMETAG_SYNC_1553_CH4 14

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GET_TIME

CEI-x30-SW Software User's Manual 131

pAR_TIMETAG_TYPE timeTag

 (output) Current device timer or translated

IRIG sample value. The timeTag.timeTag

structure member will be defined as follows

based on the supplied format parameter

value:

AR_TIMETAG_EXT_IRIG_64BIT - 64-bit IRIG sample time in

microseconds since beginning of current year. The returned

timeTag.R.referenceTimeTag structure member will contain

the board internal timer-referenced time-stamp assigned when

the last bit of the IRIG sample was processed by the CEI-x30

IRIG receiver.

AR_TIMETAG_INT_USEC_64BIT - 64-bit internal board timer

in microseconds.

AR_TIMETAG_HOST_USEC_64BIT - 64-bit host operating

system time scaled to have a 1 microsecond resolution.

AR_TIMETAG_INT_20USEC_32BIT - 32-bit internal board

timer in microseconds.

AR_TIMETAG_INT_MSEC_32BIT - 32-bit internal board timer

scaled to have a 20 microsecond resolution.

AR_TIMER_X20_COMPAT_32BIT - 32-bit internal board timer

scaled to have a 1 millisecond resolution.

AR_TIMETAG_SYNC_1553_CH1 – 64-bit timer value

synchronized to the 1553 channel1 timer, scaled to have a 1

microsecond resolution.

AR_TIMETAG_SYNC_1553_CH2 – 64-bit timer value

synchronized to the 1553 channel2 timer, scaled to have a 1

microsecond resolution.

AR_TIMETAG_SYNC_1553_CH3 – 64-bit timer value

synchronized to the 1553 channel3 timer, scaled to have a 1

microsecond resolution.

AR_TIMETAG_SYNC_1553_CH4 – 64-bit timer value

synchronized to the 1553 channel4 timer, scaled to have a 1

microsecond resolution.

Application Programming Interface AR_GET_TIMERCNTL

CEI-x30-SW Software User's Manual 132

AR_GET_TIMERCNTL

CEI_UINT32 ar_get_timercntl (CDEV_BOARD_TYPE board)

This routine is provided for legacy support of the CEI-x20 ARINC API,

returning the current 32-bit, 1 millisecond resolution time reference value

based on the current application-specified timer mode, (specified through

AR_SET_CONFIG using the attribute ARU_RX_TIMETAG_MODE). If

the current timer mode is assigned to any 64-bit timer, the least-significant

32-bits of the internal device timer will be returned (this applies to IRIG,

host, or internal timer). If the current timer mode is assigned to either of

the 32-bit CEI-x20 API compatibility or 20 microsecond (IP-AVIONICS)

resolution modes, the respective 32-bit adjusted timer value will be

returned.

The 32-bit timer value.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETWORD

CEI-x30-SW Software User's Manual 133

AR_GETWORD

CDEV_API_RET_TYPE ar_getword (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_VOID_PTR_TYPE

destination)

This routine retrieves the next unread message from the specified receive

channel. If it successfully returns data message, there may or may not be

more messages in the buffer. It only means there was at least one message

in the buffer. Subsequent calls would be required to determine if more

messages are available in the buffer. If this routine returns a status value

of ARS_NODATA, the buffer is empty.

The channel value passed to this routine corresponds to the ARINC 429

receive channel index, starting with zero. If that value exceeds the 429

receive channel count and an ARINC 717 receiver exists, the ARINC 717

receiver is used as the designated channel buffer.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA The receive buffer was empty.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG A null data parameter value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETWORD

CEI-x30-SW Software User's Manual 134

CDEV_PARM_VOID_PTR_TYPE destination (output) The address

that is to receive the message. The format of

the 32-bit value is dependent on the protocol

assigned to the respective receive channel:

ARINC 429/575 Data Format

31 30 – 10 9 - 8 7 - 0

Parity Indication or
ARINC Data MSB

ARINC Data
SDI bits or ARINC Data

bits 0-1
ARINC Label (MSB

– LSB)

ARINC 717 Data Format

31 – 16 15 14 13 - 12 11 – 0

Unused Sync Indication Unused Sub-frame Identification Data Word

 See the Channel Buffer Word 4 - Receive

description for more details.

Application Programming Interface AR_GETWORDT

CEI-x30-SW Software User's Manual 135

AR_GETWORDT

CDEV_API_RET_TYPE ar_getwordt (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_VOID_PTR_TYPE

destination, CDEV_PARM_VOID_PTR_TYPE timetag)

This routine retrieves the next unread message from the specified receive

channel. If it successfully returns data message, there may or may not be

more messages data in the buffer. It means only that there was at least one

message in the buffer. Subsequent calls are required to determine if more

messages are available in the buffer. If this routine returns a status value

of ARS_NODATA, the buffer is empty.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA The receive buffer was empty.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG A null data parameter value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CDEV_PARM_VOID_PTR_TYPE destination (output) The address

that is to receive the message. The format of

the 32-bit value is dependent on the protocol

assigned to the respective receive channel.

See the chapter “CEI-x30 Hardware

Interface” in the CEI-x30 Product Line

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETWORDT

CEI-x30-SW Software User's Manual 136

Hardware Manual for more details on

receive buffer message formats.

CDEV_PARM_VOID_PTR_TYPE timetag (output) The address that is

to receive the 32-bit time-tag associated with

the data, (resolution is programmable). If

the merged receive mode is active for the

specified channel, the upper five bits of the

32-bit time-tag word contain the receive

channel number on which the data was

received.

Application Programming Interface AR_GETWORD_XT

CEI-x30-SW Software User's Manual 137

AR_GETWORD_XT

CDEV_API_RET_TYPE ar_getword_xt (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, pCEI_UINT32 data,

pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread message and the associated time-tag

structure from the specified receive channel. If it successfully returns a

message, there may or may not be more messages in the buffer. It means

only that there was at least one message in the buffer. Subsequent calls are

required to determine if more messages are available in the buffer. If this

routine returns a status value of ARS_NODATA, the buffer is empty.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA The receive buffer was empty.

ARS_BAD_MESSAGE Receipt of an invalid message has been

detected on this receiver; a message was

returned if available in the buffer.

ARS_RX_BUFFER_OVERRUN A receive buffer overrun was

detected, no message was returned, and the

receive buffer is potentially stale.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG A null data parameter value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device this routine is to access.

Valid range is 0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

pCEI_UINT32 data (output) The address that is to receive the

32-bit message.

pAR_TIMETAG_TYPE timeTagRef (input)

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_GETWORD_XT

CEI-x30-SW Software User's Manual 138

 The timeTagRef structure member

timeTagFormat specifies the desired format

of the time-tag value returned in the timeTag

structure member. Valid values are:

AR_TIMETAG_EXT_IRIG_64BIT 0

AR_TIMETAG_INT_USEC_64BIT 1

AR_TIMETAG_HOST_USEC_64BIT 2

AR_TIMETAG_INT_20USEC_32BIT 3

AR_TIMETAG_INT_MSEC_32BIT 4

AR_TIMETAG_SYNC_1553_CH1 11

AR_TIMETAG_SYNC_1553_CH2 12

AR_TIMETAG_SYNC_1553_CH3 13

AR_TIMETAG_SYNC_1553_CH4 14

AR_TIMETAG_USE_PROGRAMMED_MODE 99

 (output)

 The address that is to receive the time-tag

data structure associated with the message.

Application Programming Interface AR_GO

CEI-x30-SW Software User's Manual 139

AR_GO

CDEV_API_RET_TYPE ar_go (CDEV_BOARD_TYPE board)

This routine assigns the global enable register Global Enable bit to be

enabled for the specified device. All message processing on the device is

activated when this routine executes.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_HW_INTERRUPT_BUFFER_READ

CEI-x30-SW Software User's Manual 140

AR_HW_INTERRUPT_BUFFER_READ

CEI_INT32 ar_hw_interrupt_buffer_read (CDEV_BOARD_TYPE board,

pCEI_UINT32 numberOfWords, pCEI_UINT32 data)

This routine provides read access to the local API copy of the CEI-x30

device interrupt queue. The local API copy is filled by hardware interrupt

processing within the default API ISR. If the host application replaces the

default API ISR with a custom ISR, this routine is not usable.

Each time this routine is invoked, the specified number of queue entries is

read from the buffer region starting at the location last referenced by the

API in a previous invocation and ending at the location written by the most

recent execution of the default API interrupt service routine.

ARS_GOTDATA Routine execution was successful and one or

more interrupt buffer entries were returned.

ARS_NODATA No unread interrupt buffer entries were

available or returned.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG A NULL data buffer pointer was supplied.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

pCEI_UINT32 numberOfWords (input/output) As an input, this argument

specified the number of interrupt buffer

entries to read and return. As an output, this

argument indicates the number of interrupt

buffer entries actually read, if there were

fewer unread entries available than what was

requested.

pCEI_UINT32 data (output) The location to store the interrupt

buffer entries read.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_INTERRUPT_QUEUE_READ

CEI-x30-SW Software User's Manual 141

AR_INTERRUPT_QUEUE_READ

CEI_INT32 ar_interrupt_queue_read (CDEV_BOARD_TYPE board,

pCEI_UINT32 numberOfWords, pCEI_UINT32 data)

This routine provides read access directly to the CEI-x30 device hardware

interrupt queue. Each time this routine is invoked, the specified number of

queue entries will be read from the interrupt queue starting at the location

referenced by last invocation of this routine, and ending at the location

indicated by the device interrupt queue pointer.

ARS_GOTDATA Routine execution was successful and one or

more interrupt queue entries were returned.

ARS_NODATA No unread interrupt queue entries were

available or returned.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG A NULL data buffer pointer was supplied.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

pCEI_UINT32 numberOfWords (input/output) As an input, this argument

specified the number of interrupt buffer

entries to read and return. As an output, this

argument indicates the number of interrupt

buffer entries actually read, if there were

fewer unread entries available in the

interrupt queue than what was requested.

pCEI_UINT32 data (output) The location to store the interrupt

queue entries read.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_INITIALIZE_API

CEI-x30-SW Software User's Manual 142

AR_INITIALIZE_API

CDEV_API_RET_TYPE ar_initialize_api (CDEV_BOARD_TYPE

board)

This routine acquires the resources for the device and initializes API local

variables. With the exception of the RAR-PCIE and RAR15-XMC-XT

boards, it also downloads the CEI-x30 firmware program, resetting the

device to an initial power-up state. While this routine is available for use,

applications should utilize the AR_OPEN routine to open a session with a

CEI-x30 board.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_DRIVERFAIL The device driver failed to open a session

with the device, either because the device is

not properly installed in the host system or a

resource conflict is inhibiting device driver

initialization.

ARS_BOARD_MUTEX For Windows only, indicates creation of the

Board Lock mutex timed-out/failed.

ARS_FW_NOT_SUPPORTED The specified flash-based device firmware

is not compatible with this API version.

ARS_BADLOAD The device driver session was opened

successfully but the device firmware

download failed.

ARS_HW_DETECT The device driver session was opened but

the detected device is not recognized as a

CEI-x30 product.

ARS_FAILURE For Windows only, indicates library

CEI_Install.dll failed to load in memory; for

Linux only, indicates creation of the Board

Lock mutex timed-out/failed; for VxWorks

only, indicates a legacy PCI driver open

session failure.

API_VXB_METHOD_ERR For VxWorks VxBus driver usage only,

indicates a device open session failure.

Syntax

Description

Return Value

Application Programming Interface AR_INITIALIZE_API

CEI-x30-SW Software User's Manual 143

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.
Arguments

Application Programming Interface AR_INITIALIZE_DEVICE

CEI-x30-SW Software User's Manual 144

AR_INITIALIZE_DEVICE

CDEV_API_RET_TYPE ar_initialize_device (CDEV_BOARD_TYPE

board)

This routine performs a non-destructive SRAM memory test, flushes the

receiver FIFO buffers, and assigns the default state of all channel

configuration registers. It also initializes the label filtering and message

scheduling features. The default state of the CEI-x30 board is defined as

follows:

 ARINC 429 Transmitter FIFOs enabled, speed set for 100Kbps and

ODD parity enabled.

 ARINC 429 Receiver FIFOs enabled, speed set for 100Kbps, ODD

parity, Merged Mode disabled, and Internal Wrap disabled.

 ARINC 717 Transmitter and Receiver FIFOs disabled, set for BPRZ

encoding at 768BPS (64-word subframe), auto-detect enabled, and

Internal Wrap disabled.

 Message Scheduler enabled, no messages defined.

 All receive label filtering disabled

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_BAD_STATIC Device register write/read/verify failure.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_HW_INTERRUPT_BUFFER_READ

CEI-x30-SW Software User's Manual 145

AR_HW_INTERRUPT_BUFFER_READ

CEI_INT32 ar_hw_interrupt_buffer_read (CDEV_BOARD_TYPE board,

pCEI_UINT32 numberOfWords, pCEI_UINT32 data)

This routine provides read access to the local API copy of the CEI-x30

device interrupt queue. The local API copy of the current device interrupt

queue is maintained by hardware interrupt processing within the default

API interrupt service routine (ISR). If the host application replaces the

default API ISR with a custom ISR, this routine is not usable.

Each time this routine is invoked, the specified number of queue entries

will be read from the buffer region starting at the location last referenced

by the API and ending at the location referenced by the interrupt queue

pointer. If fewer than the requested number of entries are found, only

those entries available will be returned.

ARS_GOTDATA At least one interrupt queue entry has been

retrieved.

ARS_NODATA No unread interrupt queue entires are

available.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid or null data buffer parameter.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

pCEI_UINT32 numberOfWords (input/output) As an input this parameter

specifies the number of interrupt queue

entries to read; as an output this parameter

indicates how many interrupt queue entries

were actually copied to the data array.

pCEI_UINT32 data (output) An array referencing the location to

store the requested 32-bit interrupt queue

entry/entries. Valid Interrupt Queue entry

values range from 64 to 95, and 255. The

value 64 indicates receive channel 0 label

filter triggered, where 95 indicates receive

channel 31 label filter triggered, and 255 is

reserved for host-triggered interrupt.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_INTERRUPT_QUEUE_READ

CEI-x30-SW Software User's Manual 146

AR_INTERRUPT_QUEUE_READ

CEI_INT32 ar_interrupt_queue_read (CDEV_BOARD_TYPE board,

pCEI_UINT32 numberOfWords, pCEI_UINT32 data)

This routine provides read access directly to the CEI-x30 device interrupt

queue. Each time you invoke this routine, the specified number of queue

entries is read from the buffer region starting at the location last referenced

by the host/API from this routine. If fewer than the requested number of

entries are found, only those entries available are returned.

ARS_GOTDATA At least one interrupt queue entry has been

retrieved.

ARS_NODATA No unread interrupt queue entries are

available.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid or null data buffer parameter.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

pCEI_UINT32 numberOfWords (input/output) As an input this parameter

specifies the number of interrupt queue

entries to read; as an output this parameter

indicates how many interrupt queue entries

were actually copied to the data array.

pCEI_UINT32 data (output) An array referencing the location to

store the requested 32-bit interrupt queue

entry/entries. Valid Interrupt Queue entry

values range from 64 to 95, and 255. The

value 64 indicates receive channel 0 label

filter triggered, where 95 indicates receive

channel 31 label filter triggered, and 255 is

reserved for host-triggered interrupt.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_LABEL_FILTER

CEI-x30-SW Software User's Manual 147

AR_LABEL_FILTER

CDEV_API_RET_TYPE ar_label_filter (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_USI_TYPE label,

CDEV_PARM_USI_TYPE action)

CEI-x30 devices support the ability to filter ARINC 429 messages by the

8-bit label value. Once filtering has been enabled for a specified

channel/label combination, data received with that label value would be

discarded until label filtering for the specified label has been disabled.

Label filtering is disabled for all labels by default. Label filtering changes

are effective immediately on completion of this routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG An invalid label or action value was

provided.

ARS_INHARVAL The specified channel does not support label

filtering.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) channel label filter table this

routine is to access. The valid range is 0 to

one less than the installed receive channel

count.

CDEV_PARM_USI_TYPE label (input) The label of interest. Valid

range is 0-255. Also valid is

ARU_ALL_LABELS (511), which invokes

the action for all labels on the specified

channel.

CDEV_PARM_USI_TYPE action (input) Enable or disable filtering for

this combination of board/channel/label.

Valid values are:

ARU_FILTER_ON (1) enable filtering

ARU_FILTER_OFF (0) disable filtering

(default state is to not filter any labels).

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_LOADSLV

CEI-x30-SW Software User's Manual 148

AR_LOADSLV

CDEV_API_RET_TYPE ar_loadslv (CDEV_BOARD_TYPE board,

CEI_UINT32 base_seg, CEI_INT32 base_port, CEI_UINT16 ram_size)

This is a legacy routine providing a backward compatible method to open

a session with a CEI-x30 board. It has been superseded by the routine

AR_OPEN.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_ DRIVERFAIL The device driver failed to open a session

with the device, either because the device is

not properly installed in the host system or a

resource conflict is inhibiting device driver

initialization.

ARS_BOARD_MUTEX For Windows only, indicates creation of the

Board Lock mutex timed-out/failed.

ARS_FW_NOT_SUPPORTED The specified flash-based device firmware

is not compatible with this API version.

ARS_BADLOAD The device driver session was opened

successfully but the device firmware

download failed.

ARS_HW_DETECT The device driver session was opened but

the detected device is not recognized as a

CEI-x30 product.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_ERR_SH_MEM_OBJ For Windows multi-process application use

only, indicates the API failed to allocate a

shared memory block.

ARS_ERR_SH_MEM_MAP For Windows multi-process application use

only, indicates the API failed to map shared

memory block.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern

mismatch.

Syntax

Description

Return Value

Application Programming Interface AR_LOADSLV

CEI-x30-SW Software User's Manual 149

ARS_WRAP_FLUSH_FAIL Unknown external messages were received

during the internal wrap test execution.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_FAILURE For Windows only, indicates library

CEI_Install.dll failed to load in memory; for

Linux multi-process application use only,

indicates the API either failed to allocate a

shared memory block or create the Board

Lock semaphore; for VxWorks only,

indicates a legacy PCI driver open session

failure.

API_VXB_METHOD_ERR For VxWorks VxBus driver usage only,

indicates a device open session failure.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CEI_UINT32 base_seg (input) This parameter is ignored, (supplied

for ARINC API compatibility only).

CEI_INT32 base_port (input) This parameter is ignored, (supplied

for ARINC API compatibility only).

CEI_UINT16 ram_size (input) This parameter is ignored, (supplied

for ARINC API compatibility only).

Arguments

Application Programming Interface AR_MODIFY_MSG

CEI-x30-SW Software User's Manual 150

AR_MODIFY_MSG

CDEV_API_RET_TYPE ar_modify_msg (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_SSI_TYPE msgNumber,

CDEV_PARM_SSI_TYPE rate, CDEV_PARM_SI_TYPE data)

This routine modifies an existing 32-bit ARINC message for periodic

retransmission, originally created through use of the AR_DEFINE_MSG

or AR_DEFINE_MSG_BLOCK API routines.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG An invalid channel value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVHARVAL Message scheduling is not supported on the

specified channel.

ARS_FAILURE The supplied message table index exceeds

the available number of table entries.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) Channel message scheduler table

this routine is to access. The valid range is 0

to one less than the number of installed

transmit channels.

CDEV_PARM_SSI_TYPE msgNumber (input) The unique message

scheduler table entry index assigned to this

message, as returned for the respective

message from the routine

AR_DEFINE_MSG or

AR_DEFINE_MSG_BLOCK. Valid range

is 0-2047.

CDEV_PARM_SSI_TYPE rate (input) Periodic transmission rate,

defined in milliseconds. A rate value of zero

will disable message transmission for this

message scheduler table entry and make this

entry available for reuse on the next

invocation of AR_DEFINE_MSG or

AR_DEFINE_MSG_BLOCK.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_MODIFY_MSG

CEI-x30-SW Software User's Manual 151

CDEV_PARM_SI_TYPE data (input) The updated 32-bit ARINC

message to transmit.

Application Programming Interface AR_MODIFY_MSG_BLOCK

CEI-x30-SW Software User's Manual 152

AR_MODIFY_MSG_BLOCK

CDEV_API_RET_TYPE ar_modify_msg_block (CEI_INT32

numberOfEntries, pAR_SCHEDULED_MSG_ENTRY_TYPE

messageEntry)

This routine provides a method to modify the channel assignment or rate

and data values on a series of 32-bit ARINC messages previously defined

for periodic retransmission via AR_DEFINE_MSG_BLOCK.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG An invalid channel structure member value

was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVHARVAL Message scheduling is not supported on the

specified channel.

ARS_FAILURE A supplied message table index exceeds the

available number of table entries.

CEI_INT32 numberOfEntries (input) The number of entries to modify

using the subsequent structure pointer

parameter, messageEntry.

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry (input)

 array of structures of message definition content, defined as follows:

unsigned long messageIndex The unique message scheduler table entry

index assigned to this message. This

messageIndex structure member will have

been defined in a previous invocation of

AR_DEFINE_MSG_BLOCK. Valid range

is 0-2047.

unsigned long board Device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_MODIFY_MSG_BLOCK

CEI-x30-SW Software User's Manual 153

unsigned long channel Which channel portion of the message

scheduler table this routine is to access. The

valid range is 0 to one less than the number

of installed transmit channels.

unsigned long rate Periodic transmission rate, in milliseconds.

A rate value of zero will disable message

transmission.

unsigned long start Not supported during message modification.

unsigned long txCount Not supported during message modification.

unsigned long data The 32-bit ARINC message to transmit.

Application Programming Interface AR_NUM_RCHANS

CEI-x30-SW Software User's Manual 154

AR_NUM_RCHANS

CDEV_CHAN_TYPE ar_num_rchans (CDEV_BOARD_TYPE board)

This routine retrieves the number of receive channels installed on the

specified device.

Any value less than 40 number of installed receive channels.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_NUM_XCHANS

CEI-x30-SW Software User's Manual 155

AR_NUM_XCHANS

CDEV_CHAN_TYPE ar_num_xchans (CDEV_BOARD_TYPE board)

This routine retrieves the number of transmit channels installed on the

specified device.

Any value less than 40 number of installed transmit channels.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_OPEN

CEI-x30-SW Software User's Manual 156

AR_OPEN

CDEV_API_RET_TYPE ar_open (CDEV_BOARD_TYPE board)

This routine opens a session and acquires the memory resources allocated

to the device, downloads the firmware to the FPGA, and invokes an

initialization/reset procedure. Following API and device initialization,

optional invocation of AR_BOARD_TEST may provide verification of

internal message wrap operation, (execution controlled via invocation of

AR_BYPASS_WRAP_TEST).

See the routine descriptions under AP_INITIALIZE_API and

AR_INITIALIZE_DEVICE for details regarding the default setup of the

API and the device following execution of this routine.

If any portion of the initialization fails or the board is not detected, a status

other than ARS_NORMAL is returned.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_ DRIVERFAIL The device driver failed to open a session

with the device, either because the device is

not properly installed in the host system or a

resource conflict is inhibiting device driver

initialization.

ARS_BOARD_MUTEX For Windows only, indicates creation of the

Board Lock mutex timed-out/failed.

ARS_FW_NOT_SUPPORTED The specified flash-based device firmware

is not compatible with this API version.

ARS_BADLOAD The device driver session was opened

successfully but the device firmware

download failed.

ARS_HW_DETECT The device driver session was opened but

the detected device is not recognized as a

CEI-x30 product.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_ERR_SH_MEM_OBJ For Windows multi-process application use

only, indicates the API failed to allocate a

shared memory block.

Syntax

Description

Return Value

Application Programming Interface AR_OPEN

CEI-x30-SW Software User's Manual 157

ARS_ERR_SH_MEM_MAP For Windows multi-process application use

only, indicates the API failed to map shared

memory block.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern

mismatch.

ARS_WRAP_FLUSH_FAIL Unknown external messages were received

during the internal wrap test execution.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_FAILURE For Windows only, indicates library

CEI_Install.dll failed to load in memory; for

Linux multi-process application use only,

indicates the API either failed to allocate a

shared memory block or create the Board

Lock semaphore; for VxWorks only,

indicates a legacy PCI driver open session

failure.

API_VXB_METHOD_ERR For VxWorks VxBus driver usage only,

indicates a device open session failure.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Arguments

Application Programming Interface AR_PUT_429_MESSAGE

CEI-x30-SW Software User's Manual 158

AR_PUT_429_MESSAGE

CDEV_API_RET_TYPE ar_put_429_message (CDEV_BOARD_TYPE

board, CDEV_CHAN_TYPE channel, CDEV_PARM_SI_TYPE data)

This routine places the provided ARINC 429 message data in the specified

channel transmit buffer. If the specified transmit buffer is full, an

overflow status is returned.

Since ARINC 429 transmit data rates are relatively slow, almost any host can generate
transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INHARVAL The specified channel is invalid or does not

support the ARINC 429 protocol.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) ARINC 429 transmit channel this

routine is to access. The valid range is 0 to

one less than the number of installed

transmit channels.

CDEV_PARM_SI_TYPE data (input) ARINC 429 message to transmit

in standard ARINC 429 format.

Syntax

Description

Note:

Return Value

Arguments

Application Programming Interface AR_PUT_573_FRAME

CEI-x30-SW Software User's Manual 159

AR_PUT_573_FRAME

CDEV_API_RET_TYPE ar_put_573_frame (CDEV_BOARD_TYPE

board, CEI_UINT32 numberWords, pCEI_UINT32 transmitCount,

pCEI_INT16 arincData)

This routine attempts to transfer numberWords of ARINC 573/717 data

from the arincData source to the device ARINC 573/717 transmit buffer.

The amount of data transferred to the transmitter is based on what is

available in the buffer, with the actual number of words transferred

indicated in the return value of transmitCount.

Since ARINC 573/717 transmit data rates are relatively slow, almost any host can
generate transmit frame data at a much faster rate than frame data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INHARVAL The specified board does not support the

ARINC 573/717 protocol.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CEI_UINT32 numberWords (input) Number of words to copy from the

source 573 frame to the transmit buffer.

pCEI_UINT32 transmitCount (output) Indicates how many words were

copied from the source 573 frame to the

transmit buffer, either less than or equal to

the value of numberWords.

pCEI_INT16 arincData (output) Pointer to the array of ARINC

573/717 frame data. The format of each

data word in the source ARINC 573/717

frame is defined as follows:

15 – 12 11 - 0

RESERVED data

data: the 12-bit ARINC 573/717 data.

Syntax

Description

Note:

Return Value

Arguments

Application Programming Interface AR_PUTBLOCK

CEI-x30-SW Software User's Manual 160

AR_PUTBLOCK

CEI_INT32 ar_putblock (CEI_UINT32 board, CEI_UINT32 channel,

CEI_INT32 maxMessages, CEI_INT32 offset, pCEI_INT32 data,

pCEI_INT32 actualCount)

This routine transfers the array of ARINC 429 messages to the specified

transmit channel buffer. When this routine returns, the data has not been

transmitted, it has only been placed in the transmit buffer. If other data is

in the transmit buffer ahead of it, this data is transmitted in turn.

Since ARINC 429 transmit data rates are relatively slow, almost any host can generate
transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INHARVAL The specified channel is invalid or does not

support the ARINC 429 protocol.

ARS_INVARG An invalid or null maxMessages, data, or

actualCount parameter was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 channel (input) ARINC 429 transmit channel this

routine is to access. The valid range is 0 to

one less than the number of installed

transmit channels.

CEI_INT32 maxMessages (input) The number of messages to transmit.

CEI_INT32 offset Unused legacy API parameter.

pCEI_INT32 data (input) Array supplying 32-bit ARINC data

values.

pCEI_INT32 actualCount (output) The number of messages copied to

the transmit buffer.

Syntax

Description

Note:

Return Value

Arguments

Application Programming Interface AR_PUTBLOCK_MULTI_CHAN

CEI-x30-SW Software User's Manual 161

AR_PUTBLOCK_MULTI_CHAN

CEI_INT32 ar_putblock_multi_chan (CEI_UINT32 board, CEI_INT32

maxMessages, pCEI_UINT32 channels, pCEI_INT32 data, pCEI_INT32

actualCount)

This routine transfers messages from the data array source to the channel

transmit buffer corresponding to the respective transmit channel element

of the channels array. When this routine returns, the data has not

necessarily been transmitted, it has only been placed in the respective

transmit buffer(s). If other data is in the transmit buffer ahead of it, this

data will be transmitted in turn.

Since ARINC 429 transmit data rates are relatively slow, almost any host can generate
transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INHARVAL One of the specified channel array elements

is invalid or does not support the ARINC

429 protocol.

ARS_INVARG An invalid or null maxMessages, data, or

NULL actualCount parameter was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_INT32 maxMessages (input) The number of messages to transmit.

pCEI_UINT32 channels (input) Array supplying the ARINC 429

transmit channel on which this routine is to

transmit the respective ARINC 429 data.

The transmit channel index in each element

of this array corresponds directly to the

ARINC 429 message defined in the

respective element of the data array. The

valid range for each element of this array is

0 to one less than the number of installed

transmit channels.

Syntax

Description

Note:

Return Value

Arguments

Application Programming Interface AR_PUTBLOCK_MULTI_CHAN

CEI-x30-SW Software User's Manual 162

pCEI_INT32 data (input) Array supplying 32-bit ARINC data

values.

pCEI_INT32 actualCount (input) The number of messages transmitted.

Application Programming Interface AR_PUTFILTER

CEI-x30-SW Software User's Manual 163

AR_PUTFILTER

CEI_INT32 ar_putfilter (CEI_UINT32 board, CEI_UINT32 channel,

pCEI_CHAR filterTable)

This routine assigns an entire channel portion of the label filter table for

the specified receive channel. Each receive channel has a separate area in

the device label filter table, which is used by the firmware to control

storage of received labels. Each element of the filter table consists of a

three bit field defined for compatibility with the CEI-x20 product line as

follows:

FILTER_SEQUENTIAL 0x10 If CLEAR add label to circular receive buffer

FILTER_SNAPSHOT 0x20 If CLEAR add label to snapshot receiver buffer

FILTER_INTERRUPT 0x40 If SET on reception insert the respective receive

channel tag (ranging from 64-95) in the interrupt queue and if

enabled generate a PCI interrupt.

The filter buffer for a single channel is defined as follows:

filterTable[MAX_ESSM][MAX_SDI][MAX_LABEL]

and accessed as follows in the array referenced by filterTable:

filterTable[eSSM][SDI][label]

where the bits of the ARINC word are split up as follows:

eSSM SDI label

30, 29, 28 9, 8 7, 6, 5, 4, 3, 2, 1, 0

For FILTER_INTERRUPT processing, an entry is made into the interrupt queue if specified
through receiver interaction with the label filter table definition, even if hardware interrupts
are not enabled.

To write individual label filter table elements, refer to the API routines

AR_ENH_LABEL_FILTER and AR_LABEL_FILTER.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG An invalid channel or filterTable value was

provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

Syntax

Description

Note:

Return Value

Application Programming Interface AR_PUTFILTER

CEI-x30-SW Software User's Manual 164

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

pCEI_CHAR filterTable (input) Array containing the contents of the

specified channel’s label filter table. This

array must have an allocation of 8Kbytes.

Arguments

Application Programming Interface AR_PUTWORD

CEI-x30-SW Software User's Manual 165

AR_PUTWORD

CDEV_API_RET_TYPE ar_putword (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel, CDEV_PARM_SI_TYPE arincdata)

This routine places the provided message data in the specified channel

transmit buffer. When this routine returns, the data has not necessarily

been sent, it has only been placed in the transmit buffer. If other data is in

the transmit buffer ahead of it, this data will be transmitted in turn. If the

specified transmit buffer is full, an overflow status is returned.

The channel value passed to this routine corresponds to the ARINC 429

transmit channel index, starting with zero. If that value exceeds the 429

transmit channel count and an ARINC 573/717 transmitter exists, it is used

as the designated transmit channel buffer.

Since ARINC transmit data rates are relatively slow, almost any host can generate
transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INHARVAL The specified channel is invalid or does not

support the ARINC 429 (or 717) protocol.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) Transmit channel this routine is to

access. The valid range is 0 to one less than

the installed transmit channel count.

CDEV_PARM_SI_TYPE arincdata (input) 32-bit ARINC 429 message

to transmit.

Syntax

Description

Note:

Return Value

Arguments

Application Programming Interface AR_QUERY_DEVICE

CEI-x30-SW Software User's Manual 166

AR_QUERY_DEVICE

CDEV_API_RET_TYPE ar_query_device (CDEV_BOARD_TYPE

board, CDEV_BOARD_TYPE * boardType)

This routine opens a session to the specified device, determines the

identification of that device, then closes the session with the device and

returns the identification to the calling application. This routine should not

be invoked with the same board parameter value used in a previous

invocation of AR_OPEN without first terminating the session with that

device via invocation of AR_CLOSE.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_BOARD_MUTEX For Windows only, indicates creation of the

Board Lock mutex timed-out/failed.

ARS_FAILURE For Windows only, indicates library

CEI_Install.dll failed to load in memory.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_BOARD_TYPE * boardType (output) Identification of the

board detected, with valid values defined as

follows:

CEI-830 19

CEI-430 21

AMC-A30 22

RCEI-530 26

R830RX 27

RAR-CPCI 28

RAR-EC 29

RAR-PCIE 30

CEI-430A 31

RCEI-830X820 34

RAR-XMC 35

RCEI-830A 36

RP-708 37

RAR-MPCIE 38

CEI-520 6

CEI-620 10

CEI-820 11

CEI-715 16

P-708 20

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_QUERY_DEVICE

CEI-x30-SW Software User's Manual 167

P-SER 104

P-DIS 106

R15-MPCIE 107

AMC-1553 108

(c)PCI-1553 109

QPCI-1553 110

QCP-1553 111

QPCX-1553 112

R15-EC 113

R15-XMC 114

R15-PCIE 115

R15-LPCIE 116

R15-XMC2 117

RAR15-XMC 118

RAR15-XMC-XT 119

Application Programming Interface AR_READ_SCHEDULED_MSG_BLOCK

CEI-x30-SW Software User's Manual 168

AR_READ_SCHEDULED_MSG_BLOCK

CDEV_API_RET_TYPE ar_read_scheduled_msg_block

(CDEV_BOARD_TYPE board, CEI_INT32 startingEntry, CEI_INT32

numberOfEntries, pAR_SCHEDULED_MSG_ENTRY_TYPE

messageEntry)

This routine returns the current contents of one or more message scheduler

table entries.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG The starting entry plus the number of entries

requested to read exceeds the upper

boundary of the message scheduler table.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CEI_INT32 startingEntry (input) The first message scheduler table

entry to read.

CEI_INT32 numberOfEntries (input) The number of entries to read from

the message scheduler table.

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry (input)

 Array of structures that will receive the message definition content:

unsigned long messageIndex The unique message scheduler table entry

index assigned to this message. Upon

completion of this routine, the messageIndex

structure member will have been updated to

reflect the message scheduler table index

assigned to the respective message.

unsigned long board Device to access. Valid range is 0-127.

unsigned long channel Channel on which to transmit this message.

The valid range is 0 to one less than the

number of installed transmit channels.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_READ_SCHEDULED_MSG_BLOCK

CEI-x30-SW Software User's Manual 169

unsigned long rate Periodic transmission rate, defined in

milliseconds by default.

unsigned long start Offset, (in milliseconds), from the start of

CEI-x30 device message processing at

which this message will begin its initial

periodic transmission.

unsigned long txCount The total number of times this message will

be transmitted. The constant value

ARU_SCHED_MSG_INFINITE

(0xFFFFFFFF) indicates infinite

transmission of this message is requested.

unsigned long data The 32-bit ARINC 429 message to transmit.

Application Programming Interface AR_RESET

CEI-x30-SW Software User's Manual 170

AR_RESET

CDEV_API_RET_TYPE ar_reset (CDEV_BOARD_TYPE board)

This routine assigns the global enable register Global Enable bit to be

disabled and reinitializes the device to the same channel configuration as

that following an invocation of AR_OPEN. See the description for the

routine AR_INITIALIZE_DEVICE for more details.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_BAD_STATIC Device register write/read/verify failure.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_RESET_TIMERCNT

CEI-x30-SW Software User's Manual 171

AR_RESET_TIMERCNT

CEI_VOID ar_reset_timercnt (CDEV_BOARD_TYPE board)

This routine is designed to provide compatibility with the CEI-x20 ARINC

API. It resets the CEI-x30 device internal one-microsecond timer to zero.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Arguments

Application Programming Interface AR_SET_CONFIG

CEI-x30-SW Software User's Manual 172

AR_SET_CONFIG

CDEV_API_RET_TYPE ar_set_config (CDEV_BOARD_TYPE board,

CDEV_PARM_SSI_TYPE item, CEI_UINT32 value)

This routine provides a means to define general device configuration

attributes, as well as limited individual channel configuration attributes. It

is provided for backward compatibility to CEI-x20 based applications.

The routine AR_SET_DEVICE_CONFIG is the desired routine for

defining channel and board-level configuration items.

ARS_NORMAL Routine execution was successful.

ARS_INVARG The item argument value is not supported by

this API routine.

ARS_INVHARVAL The item argument value is not supported by

this device configuration.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE item (input) Attribute about which to set

information:

ARU_XMIT_RATE transmit rate for all transmitters.

ARU_RECV_RATE receive rate for all receivers.

ARU_PARITY parity for all transmitters and

receivers.

ARU_INTERNAL_WRAP enables internal wrap mode for all

receivers.

ARU_RX_CH01_BIT_RATE –

ARU_RX_CH32_BIT_RATE receiver 1 - 32 bit rate.

ARU_TX_CH01_BIT_RATE –

ARU_TX_CH32_BIT_RATE transmitter 1 - 32 bit rate.

ARU_RX_CH01_PARITY –

ARU_RX_CH32_PARITY receiver 1 - 32 parity.

ARU_TX_CH01_PARITY –

ARU_TX_CH32_PARITY transmitter 1 - 32 parity.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_SET_CONFIG

CEI-x30-SW Software User's Manual 173

ARU_TX_CH01_SHUT_OFF –

ARU_TX_CH32_SHUT_OFF transmitter 1 - 32 disable.

ARU_TX_CH01_LB_INJ – transmitter 1 - 32 low bit

ARU_TX_CH32_LB_INJ error enable.

ARU_TX_CH01_HB_INJ – transmitter 1 - 32 high bit

ARU_TX_CH32_HB_INJ error enable.

ARU_TX_CH01_GAP_INJ – transmitter 1 - 32

ARU_TX_CH32_GAP_INJ message gap error enable.

ARU_RX_TIMETAG_MODE the timer/time-tag source and

resolution

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode

ARU_IRIG_WRAP_ENABLE enables IRIG receiver internal wrap

ARU_IRIG_INPUT_THRESHOLD sets the IRIG DAC threshold

ARU_IRIG_ADJUST_THRESHOLD invokes a more precise IRIG

DAC auto-adjustment procedure

ARU_IRIG_QUICK_ADJUSTMENT invokes a quick IRIG DAC

auto-adjustment procedure

ARU_IRIG_SET_BIAS assigns an offset to the board IRIG

time value

CEI_UINT32 value (input) the value to set the item.

If the specified item is ARU_XMIT_RATE (1) or ARU_RECV_RATE

(2), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)

AR_LOW (1) low rate (12.5Kbs)

Any other value specifies a frequency value in Hertz.

If the specified item is ARU_RX_CHnn_BIT_RATE (500-531), where nn

is the receiver channel (01 - 32), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)

AR_LOW (1) low rate (12.5Kbs)

Any other value specifies a frequency value in Hertz.

If the specified item is ARU_TX_CHnn_BIT_RATE (700-731), where nn

is the transmitter channel (01 - 32), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)

Application Programming Interface AR_SET_CONFIG

CEI-x30-SW Software User's Manual 174

AR_LOW (1) low rate (12.5Kbs)

Any other value specifies a frequency value in Hertz.

Any specified transmit bus frequency below 15KHz will be assigned to a slow slew rate.
Any specified transmit bus frequency above 15KHz will be assigned to a fast slew rate.

If the specified item is ARU_PARITY (3), the value parameter specifies

the parity selection for all transmit and receive channels.

AR_ODD (0) odd transmit parity and receive parity detect enabled

AR_EVEN (1) even transmit parity and rx parity detect enabled

AR_OFF (8) transmit parity and receive parity detect disabled

AR_RAW (0x2000) transmit parity and rx parity detect disabled

If the specified item is ARU_RX_CHnn_PARITY (900-931), where nn is

the receiver channel (01 - 32), valid value parameter selections are:

AR_ODD (0) receiver parity detection enabled

AR_OFF (8) receiver parity detection disabled

AR_RAW (0x2000) receiver parity detection disabled

If the specified item is ARU_TX_CHnn_PARITY (1100-1131), where nn

is the transmitter channel (01 - 32), valid value parameter selections are:

AR_ODD (0) odd transmitter parity

AR_EVEN (1) even transmitter parity

AR_OFF (8) transmitter parity disabled

AR_RAW (0x2000) transmitter parity disabled

If the requested item is ARU_TX_CHnn_SHUT_OFF (1700-1731), where

nn is the transmitter channel (01 - 32), valid value parameter selections

are:

AR_ON (7) external transmission is disabled

AR_OFF (8) external transmission is enabled

For the RAR-PCIE and RAR15-XMC-XT boards, disabling external

transmission also causes the transmit pins to switch to a tri-state condition;

for all other boards the transmit pins will switch to a null condition.

If the requested item is ARU_TX_CHnn_HB_INJ (3300-3331), where nn

is the transmitter channel (01 - 32), valid value parameter selections are:

AR_ON (7) 33-bit transmission is enabled

AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_LB_INJ (3500-3531), where nn

is the transmitter channel (01 - 32), valid value parameter selections are:

AR_ON (7) 31-bit transmission is enabled

AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_GAP_INJ (3700-3731), where

nn is the transmitter channel (01 - 32), valid value parameter selections

are:

AR_ON (7) 3-bit message gap is used

Note

Application Programming Interface AR_SET_CONFIG

CEI-x30-SW Software User's Manual 175

AR_OFF (8) standard 4-bit message gap is used

If the specified item is ARU_INTERNAL_WRAP (4), valid value

parameter selections are:

AR_WRAP_ON (0) internal wrap enabled

AR_WRAP_OFF (1) internal wrap disabled

If the specified item is ARU_RX_TIMETAG_MODE (440), valid value

parameter selections represent the timer/time-tag source and resolution.

This item specifies the resolution of any timer-read or receive data time-

tag value obtained via the API, with value selections defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

AR_TIMETAG_INT_20USEC_32BIT (3)

AR_TIMETAG_INT_MSEC_32BIT (4)

A value of AR_TIMETAG_EXT_IRIG_64BIT selects the source as

the external IRIG receiver, if connected; otherwise, if the IRIG

signal is not internally wrapped this selection would be invalid. All

other values represent various timer/time-tag LSB resolution values

based on the internal CEI-x30 device timer.

If the specified item is ARU_ACCESS_SNAPSHOT_BUFFER (38), a

valid value parameter for selecting the active Snapshot Buffer storage

mode is:

ARU_LABEL_ONLY (0) messages stored based on label

ARU_LABEL_WITH_SDI (1) messages stored based on the

combined label and SDI field values

If the specified item is ARU_IRIG_WRAP_ENABLE (441), valid value

parameter selections are:

AR_ON (7) IRIG receiver internal wrap enabled

AR_OFF (8) IRIG receiver internal wrap disabled

If the specified item is ARU_IRIG_INPUT_THRESHOLD (442), the

value parameter specifies the IRIG receiver threshold voltage in millivolts.

The item ARU_IRIG_ADJUST_THRESHOLD (443) invokes the IRIG

DAC auto-adjustment procedure. This procedure will determine the low

and high threshold values at which the incoming IRIG signal is present. It

then determines the best threshold level for the IRIG DAC, and returns the

value to the application in place of a returned status (failures are indicated

via return value of ARS_FAILURE). This procedure may execute for up

to, and in some cases in excess of, one minute before finding the best-case

threshold value for the incoming IRIG signal. If a printed status of the

execution progress within this procedure is desired, assign the value

parameter to any non-zero value.

Application Programming Interface AR_SET_CONFIG

CEI-x30-SW Software User's Manual 176

If the specified item is ARU_IRIG_QUICK_ADJUSTMENT (444), the

API performs a quick adjustment of the IRIG DAC for an external input

IRIG signal using signal edge detection for verification of signal presence.

This execution of this adjustment should require less than one second.

If the specified item is ARU_IRIG_SET_BIAS (446), a valid value

parameter consists of an offset to the board-supplied IRIG time specified

in milliseconds. The bias time range is +/-32.768 seconds.

Application Programming Interface AR_SET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 177

AR_SET_DEVICE_CONFIG

CDEV_API_RET_TYPE ar_set_device_config (CDEV_BOARD_TYPE

board, CDEV_CHAN_TYPE channel, CDEV_PARM_SSI_TYPE item,

CDEV_PARM_SSI_TYPE value)

This is the recommended routine to define the general device and ARINC

429 channel configuration attributes.

ARS_NORMAL Routine execution was successful.

ARS_INVARG The item argument value is not supported by

this API routine.

ARS_INVHARVAL The item argument value is not supported by

this device configuration.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed channel count for the

respective channel type.

CDEV_PARM_SSI_TYPE item (input) Specifies the configuration

attribute to define:

ARU_RX_BITRATE receive rate for specified channel.

ARU_RX_PARITY receive parity for specified channel.

ARU_RX_FIFO_ENABLE receive channel FIFO enable.

ARU_RECV_MODE receive channel internal wrap mode.

ARU_RX_MERGED_MODE receive channel merge mode enable.

ARU_RX_MSG_SIZE_24BIT receiver 24-bit message mode.

ARU_TX_BITRATE transmit rate for specified channel.

ARU_TX_PARITY transmit parity for specified channel.

ARU_TX_FIFO_ENABLE transmit channel FIFO enable.

ARU_TX_DISABLE transmit channel transceiver disable.

ARU_TX_GAP_ERROR transmit message gap error enable.

ARU_TX_BIT_ERROR transmit message size error enable.

ARU_TX_MSG_SIZE_24BIT transmitter 24-bit message mode.

ARU_FAST_SLEW_RATE transmit channel slew rate select.

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_SET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 178

ARU_BYPASS_INIT_WRAP_TEST bypass initialization wrap test

ARU_MULTITHREAD_PROTECT control use of thread protection

ARU_RX_TIMETAG_MODE timer/time-tag source and resolution

ARU_DIFFERENTIAL_OUT differential output enable and state

ARU_DISCRETE_OUT sets a discrete output state

ARU_IRIG_WRAP_ENABLE enables IRIG receiver internal wrap

ARU_IRIG_INPUT_THRESHOLD sets the IRIG DAC threshold

ARU_IRIG_ADJUST_THRESHOLD both invoke IRIG DAC

ARU_IRIG_QUICK_ADJUSTMENT auto-adjustment procedures

ARU_IRIG_SET_BIAS assigns an offset to IRIG time

ARU_IRIG_OUTPUT_ENABLE R830RX IRIG Tx state

ARU_HW_ENHANCE_UPDATE update board for enhanced f/w

ARU_HW_INTERRUPT_ENABLE enable/disable PCI interrupts

ARU_INSERT_INT_Q_ENTRY insert entry in interrupt queue

ARU_CONFIG_PROGRAMMABLE_CHAN assign a pgm chan state

CDEV_PARM_SSI_TYPE value (input) the value to set the specified

item.

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE

(2), valid value parameter selections are:

ARU_SPEED_HIGH (0) high rate (100Kbs)

ARU_SPEED_LOW (1) low rate (12.5Kbs)

Any other value assigns a non-standard bus speed, and is translated

as a divisor for the 16MHz device clock reference. This value and

the respective baud rate may be interpreted using the following

formulas:

 Baud Rate = 16,000,000 / (Value+2)

 Value = (16,000,000 / Desired Baud Rate) - 2

Any non-standard transmit bus speed value resulting in a baud rate below 15KHz will be
assigned to a slow slew rate. Any non-standard transmit bus speed value resulting in a
baud rate at or above 15KHz will be assigned to a fast slew rate.

If the requested item is ARU_RX_PARITY (3), valid value parameter

selections are:

AR_ON (7) receiver parity enabled

AR_OFF (8) receiver parity disabled

If the requested item is ARU_TX_PARITY (4), valid value parameter

selections are:

ARU_PARITY_ODD (0) odd transmitter parity

ARU_PARITY_EVEN (1) even transmitter parity

ARU_PARITY_NONE (2) transmitter parity disabled

Note:

Application Programming Interface AR_SET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 179

If the requested item is ARU_RECV_MODE (5), valid value parameter

selections are:

AR_WRAP_ON (0) internal wrap enabled

AR_WRAP_OFF (1) internal wrap disabled

If the requested item is ARU_RX_FIFO_ENABLE (16) or

ARU_TX_FIFO_ENABLE (17), valid value parameter selections are:

AR_ON (7) Rx/Tx FIFO operation enabled

AR_OFF (8) Rx/Tx FIFO operation disabled

If the requested item is ARU_TX_DISABLE (10), valid value parameter

selections are:

AR_ON (7) external transmission disabled

AR_OFF (8) external transmission enabled

For the RAR-PCIE and RAR15-XMC-XT boards, disabling external

transmission also causes the transmit pins to switch to a tri-state condition;

for all other boards the transmit pins will switch to a null condition.

If the requested item is ARU_TX_GAP_ERROR (8), valid value

parameter selections are:

AR_ON (7) transmit message gap error enabled

AR_OFF (8) transmit message gap error disabled

If the requested item is ARU_TX_BIT_ERROR (6), valid value parameter

selections are:

AR_LO (0) Low Bit Error operation is enabled

AR_HI (1) High Bit Error operation is enabled

AR_OFF (8) bit errors are disabled on this transmitter

If the requested item is ARU_FAST_SLEW_RATE (323), valid value

parameter selections are:

AR_ON (7) Fast Slew Rate selected (1.5 µsec rise time)

AR_OFF (8) Slow Slew Rate selected (10 µsec rise time)

If the requested item is ARU_RX_MERGED_MODE (18), valid value

parameter selections are:

AR_ON (7) receiver merged mode operation enabled

AR_OFF (8) receiver merged mode operation disabled

If the requested item is ARU_ RX_MSG_SIZE_24BIT (459), this routine

returns the current state of the specified receive channel configuration

register 24-bit Message Size enable field:

AR_ON (7) ARINC 585 24-bit protocol enabled

AR_OFF (8) ARINC 429/575 32-bit protocol enabled

If the requested item is ARU_ TX_MSG_SIZE_24BIT (460), this routine

returns the current state of the specified transmit channel configuration

register 24-bit Message Size enable field:

Application Programming Interface AR_SET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 180

AR_ON (7) ARINC 585 24-bit protocol enabled

AR_OFF (8) ARINC 429/575 32-bit protocol enabled

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38),

valid value parameter selections are:

ARU_LABEL_ONLY (0) message storage on a label basis

ARU_LABEL_WITH_SDI (1) message storage on a label/sdi basis

If the specified item is ARU_BYPASS_INIT_WRAP_TEST (320), valid

value parameter selections are:

AR_ON (7) bypass internal wrap test invocation during init

AR_OFF (8) execute internal wrap test invocation during init

If the specified item is ARU_MULTITHREAD_PROTECT (321), valid

value parameter selections are:

AR_ON (7) enables mutex/semaphore thread protection

AR_OFF (8) disables mutex/semaphore thread protection

If the specified item is ARU_RX_TIMETAG_MODE (440), valid value

parameter selections represent the timer/time-tag source and resolution.

This item specifies the resolution of any timer-read or receive data time-

tag value obtained via the API, with value selections defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

AR_TIMETAG_INT_20USEC_32BIT (3)

AR_TIMETAG_INT_MSEC_32BIT (4)

AR_TIMETAG_SYNC_1553_CH1 (11)

AR_TIMETAG_SYNC_1553_CH2 (12)

AR_TIMETAG_SYNC_1553_CH3 (13)

AR_TIMETAG_SYNC_1553_CH4 (14)

A value of AR_TIMETAG_EXT_IRIG_64BIT selects the source as

the external IRIG receiver, if connected; otherwise, if the IRIG

signal is not internally wrapped this selection would be invalid. .

Any 1553 synchronized time value selects the timer source as the

respective 1553 channel on a Multi-protocol device.

All other values represent various timer/time-tag LSB resolution

values based on the internal CEI-x30 device timer.

If the specified item is ARU_DISCRETE_OUT (12), valid value

parameter selections are:

AR_HI (1) Discrete Out set to 0 (FET OFF – tri-state)

AR_LO (0) Discrete Out set to 1 (FET ON – conduct to Ground)

(see paragraph Avionics Discrete I/O for the Discrete circuit

diagram)

Application Programming Interface AR_SET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 181

If the specified item is ARU_ DIFFERENTIAL _OUT (23), valid value

parameter selections assign both the enable state and output state of the

differential channel:

AR_HI (1) the differential output is set high

AR_LO (0) the differential output is set low

AR_ON (7) the differential output is enabled

AR_OFF (8) the differential output is disabled

If the specified item is ARU_IRIG_WRAP_ENABLE (441), valid value

parameter selections are:

AR_WRAP_ON (0) IRIG receiver internal wrap enabled

AR_WRAP_OFF (1) IRIG receiver internal wrap disabled

If the specified item is ARU_IRIG_INPUT_THRESHOLD (442), the

value parameter specifies the IRIG receiver threshold voltage in millivolts.

The item ARU_IRIG_ADJUST_THRESHOLD (443) invokes the IRIG

DAC auto-adjustment procedure. This procedure determines the low and

high threshold values at which the incoming IRIG signal is present. It then

determines the best threshold level for the IRIG DAC, and returns the

value to the application in place of a returned status (failures are indicated

through return value of ARS_FAILURE). This procedure may execute for

up to and in some cases in excess of one minute before finding the best-

case threshold value for the incoming IRIG signal. If a printed status of

the execution progress within this procedure is desired, assign the value

parameter to any non-zero value.

If the specified item is ARU_IRIG_QUICK_ADJUSTMENT (444), the

API performs a quick adjustment of the IRIG DAC for an external input

IRIG signal, using signal edge detection for verification of signal presence.

This execution of this adjustment should require less than one second.

If the specified item is ARU_IRIG_SET_BIAS (446), the API assigns an

offset to the board IRIG time value calculation for any time and time-tag

retrieval.

If the specified item is ARU_IRIG_OUTPUT_ENABLE (26), valid value

parameter selections to control the state of the R830RX IRIG Generator

Enable are:

AR_ON (7) IRIG output is enabled

AR_OFF (8) IRIG output is disabled

If the specified item is ARU_HW_ENHANCE_UPDATE (31), valid value

parameter selections to control the board’s PCI BAR2 Size allocation

residing in an on-board EEPROM are:

AR_ON (7) support for the CEI-x30 Enhanced Firmware

 Interface is enabled

AR_OFF (8) support for the CEI-x30 Enhanced Firmware

 Interface is disabled

Application Programming Interface AR_SET_DEVICE_CONFIG

CEI-x30-SW Software User's Manual 182

Based on the value parameter selection, the board may be reprogrammed

to support the 512Kb CEI-x30 Enhanced Firmware Interface (exclusively

supported with CEI-x30 API Version 2.00 and later); or it may be

reprogrammed to support only the standard 4Kb CEI-x30 interface,

(exclusively supported with CEI-x30 API Versions 1.00 through 1.70).

Any modification to the current PCI BAR2 Size allocation requires a host restart for those
changes to take effect in the system.

If the specified item is ARU_HW_INTERRUPT_ENABLE (29), valid

value parameter selections to control the state of the PCI Interrupt Enable

state are:

AR_ON (7) PCI Interrupts are enabled

AR_OFF (8) PCI Interrupts are disabled

If the specified item is ARU_INSERT_INT_Q_ENTRY (37), the value

parameter is ignored and the value 255 is inserted as the next entry in the

device interrupt queue.

If the specified item is ARU_CONFIG_PROGRAMMABLE_CHAN

(457), valid value parameter selections to control the enable function of a

software programmable transmit/receive channel pair are:

ARU_RECEIVER (0) configures the shared I/O pins and respective

receive channel for reception (disables the transmitter).

ARU_TRANSMITTER (1) configures the shared I/O pins and

respective transmit channel for external transmission (disables the

receiver).

ARU_BOTH (2) configures the shared I/O pins and respective

transmit and receive channels for external transmission and

reception (all transmissions logged to receiver).

ARU_DISABLE (3) disables external transmission and reception on

the transmit and receive channels assigned to the respective shared

I/O pins.

Note:

Application Programming Interface AR_SET_573_CONFIG

CEI-x30-SW Software User's Manual 183

AR_SET_573_CONFIG

CDEV_API_RET_TYPE ar_set_573_config (CDEV_BOARD_TYPE

board, CDEV_PARM_SSI_TYPE item, CDEV_PARM_SI_TYPE value)

This routine provides the method for manipulating the ARINC 573/717

channel configuration attributes.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVHARVAL the item argument value is not supported by

the device configuration or this API routine.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE item (input) Specifies the configuration

attribute to define:

ARU_RECV_MODE receiver internal wrap.

ARU_RX_MERGED_MODE receiver merge mode enable.

ARU_RX_BITRATE receive channel bit rate.

ARU_RX_FIFO_ENABLE receive channel FIFO enable.

ARU_TX_BITRATE transmit channel bit rate.

ARU_TX_FIFO_ENABLE transmit channel FIFO enable.

ARU_573_RX_AUTO_DETECT data frame auto-detect enable.

ARU_573_RX_BPRZ_SELECT receiver BPRZ/HBP selection.

ARU_573_TX_BPRZ_SELECT transmit BPRZ encoding enable.

ARU_573_TX_HBP_SELECT transmit HBP encoding enable.

ARU_573_TX_SLEW_RATE transmit slew rate select.

ARU_573_SYNC_WORD1 receiver auto-detect sync word 1.

ARU_573_SYNC_WORD2 receiver auto-detect sync word 2.

ARU_573_SYNC_WORD3 receiver auto-detect sync word 3.

ARU_573_SYNC_WORD4 receiver auto-detect sync word 4.

CDEV_PARM_SI_TYPE value (input) The state to assign to the

specified configuration item:

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_SET_573_CONFIG

CEI-x30-SW Software User's Manual 184

If the requested item is ARU_RECV_MODE (5), valid value parameter

selections are:

AR_WRAP_ON (0) = internal wrap enabled

AR_WRAP_OFF (1) = internal wrap disabled

If the requested item is ARU_RX_MERGED_MODE (18), valid value

parameter selections are:

AR_ON (7) receiver merged mode operation enabled

AR_OFF (8) receiver merged mode operation disabled

If the requested item is ARU_RX_FIFO_ENABLE (16) or

ARU_TX_FIFO_ENABLE (17), valid value parameter selections are:

AR_ON (7) FIFO operation enabled

AR_OFF (8) FIFO operation disabled

If the configuration item is ARU_RX_BITRATE (1) or

ARU_TX_BITRATE (2), valid item values are one of the following (0-7):

ARU_573_RATE_SIZE_384_32 384 bps, 32 word sub-frame

ARU_573_RATE_SIZE_768_64 768 bps, 64 word sub-frame

ARU_573_RATE_SIZE_1536_128 1536 bps, 128 word sub-frame

ARU_573_RATE_SIZE_3072_256 3072 bps, 256 word sub-frame

ARU_573_RATE_SIZE_6144_512 6144 bps, 512 word sub-frame

ARU_573_RATE_SIZE_12288_1024 12288 bps, 1024 word sub-frame

ARU_573_RATE_SIZE_24576_2048 24576 bps, 2048 word sub-frame

ARU_573_RATE_SIZE_49152_4096 49152 bps, 4096 word sub-frame

If the configuration item is ARU_573_RX_AUTO_DETECT (301), valid

item values are one of the following:

AR_ON (7) ARINC 573/717 frame auto-detection enabled

AR_OFF (8) ARINC 573/717 frame auto-detection disabled

If the configuration item is ARU_573_RX_BPRZ_SELECT (302), valid

item values are one of the following:

AR_OFF (7) ARINC 573/717 HBP reception enabled

AR_ON (8) ARINC 573/717 BPRZ reception enabled

If the configuration item is ARU_573_TX_BPRZ_SELECT (313), valid

item values are one of the following:

AR_OFF (7) ARINC 573/717 BPRZ transmission disabled

AR_ON (8) ARINC 573/717 BPRZ transmission enabled

Application Programming Interface AR_SET_573_CONFIG

CEI-x30-SW Software User's Manual 185

If the configuration item is ARU_573_TX_HBP_SELECT (314), valid

item values are one of the following:

AR_OFF (7) ARINC 573/717 HBP transmission disabled

AR_ON (8) ARINC 573/717 HBP transmission enabled

If the configuration item is ARU_573_TX_SLEW_RATE (315), valid

item values are one of the following:

ARU_573_TX_SLEW_1PT5 (1) = fast (1.5µsec rise time)

ARU_573_TX_SLEW_10PT0 (0) = slow (10.0µsec rise time)

If the configuration item is ARU_573_SYNC_WORD1 (307),

ARU_573_SYNC_WORD2 (308), ARU_573_SYNC_WORD3 (309), or

ARU_573_SYNC_WORD4 (310), a valid item value is any 12-bit non-

zero value.

Application Programming Interface AR_SET_MULTITHREAD_PROTECT

CEI-x30-SW Software User's Manual 186

AR_SET_MULTITHREAD_PROTECT

CDEV_API_RET_TYPE ar_set_multithread_protect

(CDEV_BOARD_TYPE board, CDEV_PARM_SSI_TYPE state)

This routine controls the use of mutex/semaphore protection around all

device channel-specific accesses performed within the API routines. This

type of thread protection should be enabled for any multi-threaded

application or reentrant API usage.

ARS_NORMAL routine was successful.

ARS_INVARG An invalid state value was provided.

ARS_INVBOARD An invalid board value was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE state (input) Multi-thread protection

setting, valid values are defined as follows:

 AR_ON (7) enables mutex/semaphore protection.

 AR_OFF (8) disables mutex/ semaphore protection.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_SET_ISR_FUNCTION

CEI-x30-SW Software User's Manual 187

AR_SET_ISR_FUNCTION

CEI_INT32 ar_set_isr_function (CEI_INT32 board, pCEI_VOID

function)

This routine allows the host application to define a custom interrupt

service routine to be referenced by the operating system-specific hardware

interrupt initialization. It assigns the host-supplied function pointer to an

array of pointers indexed by the board parameter value. The function

referenced by this pointer is invoked from the internal routine

cei_utl_interrupt_handler() instead of executing the default API-supplied

"flush the h/w interrupt queue" processing.

The function declaration for the supplied interrupt service routine should

be defined as follows for the respective operating system:

Any Windows:

void _stdcall host_interrupt_handler (CEI_INT32 deviceIndex);

Any Linux distribution:

void host_interrupt_handler (CEI_INT32 deviceIndex);

Any VxWorks or Integrity distribution:

void host_interrupt_handler (CEI_INT32 deviceIndex,

 pCEI_UINT32 data);

The data parameter should not be used by the ISR.

This interrupt service routine is executed as a separate process or task from the
actual host low-level h/w interrupt processing, with an execution priority based on
default process/task priority settings for the respective host operating system.

ARS_NORMAL routine was successful.

ARS_INVARG An null function value was provided.

ARS_INVBOARD An invalid board value was provided.

CDEV_BOARD_TYPE board (input) Device index for storing the

function pointer. Valid range is 0-127.

pCEI_VOID function (input) Function pointer to the host specified

interrupt service routine.

Syntax

Description

Note:

Return Value

Arguments

Application Programming Interface AR_SET_ PRELOAD_CONFIG

CEI-x30-SW Software User's Manual 188

AR_SET_ PRELOAD_CONFIG

CDEV_API_RET_TYPE ar_set_preload_config (CDEV_BOARD_TYPE

board, CDEV_PARM_SSI_TYPE item, CEI_UINT32 value)

This routine is designed to provide protection when executing multi-

threaded or multi-process applications with your CEI-x30 device. Call this

routine before calling AR_OPEN to update the value of a particular pre-

load API operational configuration setting. This routine should not be

called subsequent to any invocation of AR_OPEN.

If item is ARU_CONCURRENCY_MODE, the value parameter specifies

the API concurrency mode. One of three modes may be selected:

AR_CONC_NONE, AR_CONC_MULTITHRD, or

AR_CONC_MULTIPROC. Note that some modes are only supported on

certain operating systems.

The default concurrency mode, AR_CONC_NONE, provides no multi-

thread protection to the device and no multi-process API support. The

user application must ensure that only one thread is calling into the API at

any given time, and only a single process may interface with a particular

board.

If AR_CONC_MULTITHRD concurrency mode is selected, thread

protection for each device access is provided internally within the API.

The user application may call into the API from multiple threads, but all

threads must belong to a single process. The main user application thread

should initialize the board with a call to AR_OPEN before other threads

attempt to call into the API. This mode is supported on all operating

systems supported by the CEI-x30 software distribution.

If AR_CONC_MULTIPROC concurrency mode is selected, thread

protection is provided internally within the API and multiple processes

may interface with a single board. If any process requests multi-process

mode, all other processes must also request multi-process mode. This

mode is only supported under Windows operating systems and Linux

Kernel 2.6/3.x distributions specifically supporting System V features.

The use of hardware interrupts is prohibited when multi-process operations are enabled
under the Windows operating system.

In this mode, all processes must invoke AR_OPEN during initialization of

the process and AR_CLOSE upon termination. Failure to follow this strict

requirement could result in irrecoverable errors. Note that board

setup/initialization is only executed in AR_OPEN if no other processes

have the board open. If another process has the board open (that is, if

another process has opened the board using AR_OPEN but hasn't yet

Syntax

Description

Note:

Application Programming Interface AR_SET_ PRELOAD_CONFIG

CEI-x30-SW Software User's Manual 189

closed the board using AR_CLOSE), AR_OPEN attaches to the device

without re-initializing the board or modifying board settings. Similarly,

AR_CLOSE only shuts down the board if no other processes have the

board open. If another process has the board open, AR_CLOSE detaches

from the board without shutting it down. Thus, board settings are

preserved across all process invocations of AR_OPEN and AR_CLOSE.

Multi-process mode is only required when accessing a single board from

multiple processes. If multiple boards are installed, AR_CONC_NONE

concurrency mode can be used as long as only one process interfaces with

each board.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_INVARG An invalid item or value parameter was

provided.

ARS_BOARD_MUTEX Creation of the Board Lock mechanism

failed.

ARS_NO_OS_SUPPORT The item selection not supported with the

host operating system.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE item (input) Attribute about which to set

information, currently limited to a single

option, ARU_CONCURRENCY_MODE.

CEI_UINT32 value (input) the value to set the specified item.

AR_CONC_NONE no multi-thread or multi-process support

(default).

AR_CONC_MULTITHRD multi-thread concurrency mode (see

Description section for details).

AR_CONC_MULTIPROC multi-process concurrency mode (see

Description section for details).

Return Value

Arguments

Application Programming Interface AR_SET_RAW_MODE

CEI-x30-SW Software User's Manual 190

AR_SET_RAW_MODE

CDEV_API_RET_TYPE ar_set_raw_mode (CDEV_BOARD_TYPE

board, CDEV_PARM_SSI_TYPE direction, CDEV_CHAN_TYPE

channel, CDEV_PARM_SSI_TYPE control)

This routine is designed to provide compatibility with the CEI-x20 ARINC

APIs. The routine AR_SET_DEVICE_CONFIG is the recommended

routine for manipulating the channel parity attribute.

Each transmit and receive channel can be configured to run in raw mode,

where parity assignment and detection is disabled. When raw mode is

selected, every 32-bit ARINC word is transmitted or received with the

parity bit (msb) unchanged. This differs from a standard ARINC 429 data

transfer in which the message parity is always calculated. Raw mode is

typically used for older ARINC specifications such as ARINC 575.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVHARVAL An invalid channel parameter was provided

or the specified channel doesn’t support

parity selection.

ARS_INVARG An invalid direction or control parameter

was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE direction (input) The type of channel

specified in the channel argument (transmit

or receive). Valid values to select transmit

channels are:

TRANSMIT_CHANNEL (0)

ARU_XMIT (34)

 Valid values to select receive channels are:

RECEIVE_CHANNEL (1)

ARU_RECV (35)

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_SET_RAW_MODE

CEI-x30-SW Software User's Manual 191

CDEV_CHAN_TYPE channel (input) Specifies which channel this

routine is to access. Valid range is 0 to one

less than the installed channel count for the

respective channel type.

CDEV_PARM_SSI_TYPE control (input) Enables or disables raw

mode.

AR_ON (7) enable "raw" mode, parity

is disabled

AR_OFF (8) disable "raw" mode, parity

assignment and/or checking is enabled

Application Programming Interface AR_SET_ STORAGE_MODE

CEI-x30-SW Software User's Manual 192

AR_SET_ STORAGE_MODE

CDEV_API_RET_TYPE ar_set_storage_mode (CDEV_BOARD_TYPE

board, CDEV_PARM_SSI_TYPE mode)

This routine is designed to provide backward compatibility with legacy

ARINC API board-wide ARINC message storage selection. The routine

AR_SET_DEVICE_CONFIG is the recommended routine for manipulating

individual receive channel data storage modes.

While CEI-x30 devices can store received data in either individual receive

buffers or in a single merged receive buffer on an individual channel basis,

this routine allows you to perform a single invocation to select the

universal receive mode for all receive channels on the device, as either

BUFFERED (individual) or MERGED.

Each receive data API routine detects the respective receive channel

assigned storage mode, and will acquire messages from the appropriate

buffer as necessary.

ARS_NORMAL Routine execution was successful.

ARS_INVARG An invalid mode value was provided.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE mode (input) The type of receive data

storage mode to assign. Valid values are:

ARU_BUFFERED (0) use individual FIFO buffers

ARU_MERGED (2) use the merged FIFO buffer

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_SET_TIME

CEI-x30-SW Software User's Manual 193

AR_SET_TIME

CDEV_API_RET_TYPE ar_set_time (CDEV_BOARD_TYPE board,

pAR_TIMETAG_TYPE timeTag)

This routine assigns a value to the specified CEI-x30 device internal timer

or IRIG time generator based on an application-supplied time format and

value.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG An invalid timeTag structure member

timeTagFormat selection was provided.

ARS_INVHARVAL The external IRIG time option was

requested via the timeTagFormat structure

member, but IRIG is not available on the

specified device.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

pAR_TIMETAG_TYPE timeTag

 (input) The 64-bit device timer or 32-bit

IRIG time generator value to assign to the

respective hardware. Valid options for the

timeTagFormat structure member are:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

 To assign a 32-bit IRIG Day/Time

value, the timeTag structure member

should be defined as a 30-bit value of

the following bit format:

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_SET_TIME

CEI-x30-SW Software User's Manual 194

29-28 27-24 23-20 19-18 17-14 13-11 10-7 6-4 3-0

hundreds
of days

tens of
days

days tens of
hours

hours tens of
minutes

minutes tens of
seconds

seconds

 To assign a 64-bit internal timer value,

the timeTag structure member should be

defined as a 64-bit 1 microsecond

resolution time value.

 The timeTagRef structure member is not

used by this routine.

 See the section titled Time-tag Structure Definition

for more information on the AR_TIMETAG_TYPE

data structure.

Application Programming Interface AR_SLEEP

CEI-x30-SW Software User's Manual 195

AR_SLEEP

CEI_VOID ar_sleep (CEI_UINT32 sleep_ms)

This routine suspends execution of the calling thread for the specified

number of milliseconds. Platform-dependent thread delay methods are

used to implement this operation, defined below for the supported

operating system. The accuracy of this operation is dependent upon the

accuracy of the underlying operating system call.

None

CEI_INT32 sleep_ms (input) Sleep duration, in milliseconds.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_SET_TIMERRATE

CEI-x30-SW Software User's Manual 196

AR_SET_TIMERRATE

CEI_VOID ar_set_timerrate (CDEV_BOARD_TYPE board,

CDEV_PARM_SSI_TYPE rate)

This routine assigns the API internal timer reference resolution for

compatibility with applications based on the CEI-x20 product family

device timer and time-tag operation. When you invoke this routine, the

CEI-x30 API sets the current timer usage and time-tag reporting mode to

the “CEI-x20 compatibility mode”. In this mode, all scheduled message

rate and start offset values and receive message time-stamp values are

referenced in terms of the resolution value assigned in the “rate” parameter

instead of the standard one millisecond (for scheduled message rate/offset)

or one microsecond (for receive message time-stamps).

The actual CEI-x30 hardware device time-tag reference timer resolution is

not programmable; rather, it is a fixed one microsecond resolution.

The CEI-x30 message scheduler minimum rate resolution is fixed at a one

millisecond resolution. As a result, any timer rate assignment having a

resolution that is not divisible by, or is less than, one millisecond, coupled

with an attempt to define a message scheduler entry rate or start offset

value that is not divisible by one millisecond results in that value being

assigned to the nearest 1 millisecond value below the assigned value.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_PARM_SSI_TYPE rate (input) Resolution of the CEI-x30-

emulated timer operation, specified as a tick-

timer value having a resolution of 250

nanoseconds.

Syntax

Description

Arguments

Application Programming Interface AR_STOP

CEI-x30-SW Software User's Manual 197

AR_STOP

CDEV_API_RET_TYPE ar_stop (CDEV_BOARD_TYPE board)

This routine assigns the global enable register Global Enable bit to be

disabled for the specified device. All active message processing is

terminated upon execution of this routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_UPDATE_MSG_BLOCK

CEI-x30-SW Software User's Manual 198

AR_UPDATE_MSG_BLOCK

CEI_INT32 ar_update_message_block (CDEV_BOARD_TYPE board,

CEI_UINT32 numberOfMsgs, CEI_UINT32 msgIndex, pCEI_UINT32

msgValues)

This routine modifies only the message value of a successive block of

message scheduler table entries previously defined via ar_define_msg or

ar_define_msg_block.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG An invalid message scheduler table index

was provided.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CEI_UINT32 numberOfMsgs (input) The number of message scheduler

entries to modify.

pCEI_UINT32 msgValues (input) The updated 32-bit ARINC message

values to overwrite the values in the

specified message scheduler table entries.

Syntax

Description

Return Value

Arguments

Application Programming Interface AR_VERSION

CEI-x30-SW Software User's Manual 199

AR_VERSION

CEI_VOID ar_version (pCEI_CHAR verstr)

This routine retrieves the current software version number of the device

API.

pCEI_CHAR verstr (output) String representation of the API

Version number consisting of up to 10

characters.

Syntax

Description

Arguments

Application Programming Interface AR_WAIT

CEI-x30-SW Software User's Manual 200

AR_WAIT

CEI_VOID ar_wait (CEI_FLOAT nsecs)

This routine delays the calling application by the specified number of

seconds. The delay is based on the respective OS system time utility.

CEI_FLOAT nsecs (input) Number of seconds to delay.

Syntax

Description

Arguments

Application Programming Interface AR_XMIT_SYNC

CEI-x30-SW Software User's Manual 201

AR_XMIT_SYNC

CDEV_API_RET_TYPE ar_xmit_sync (CDEV_BOARD_TYPE board,

CDEV_CHAN_TYPE channel)

This is a utility that waits for all the data in the transmit buffer to be loaded

into the ARINC transmitter. It is useful in an application that is sending

data out but doesn't want to halt the interface until everything has been

sent.

CDEV_BOARD_TYPE board (input) Device to access. Valid range is

0-127.

CDEV_CHAN_TYPE channel (input) The transmit channel on which to

wait.

Syntax

Description

Arguments

	Contents
	Figures
	Tables
	The CEI-x30 ARINC Product Line
	Overview
	Common Features
	General Features
	ARINC 429 Transmit Features
	ARINC 429 Receive Features

	Multiprotocol Boards
	Operating Systems Supported
	Summary

	Windows Installation
	Software Installation under Windows
	Hardware Installation
	Device Driver Installation under Windows
	Installation Verification

	VxWorks Installation
	Overview
	Building a VxWorks Image
	VxBus Gen 1 Driver Support (VxWorks 6.8 and 6.9)
	VxBus Gen 2 Driver Support (VxWorks 7)
	Legacy PCI Driver Support
	Common Build Components

	Using the Sample Program
	Building the API and Sample Program with Workbench
	Target-specific Compiler Directives

	Linux Installation
	Overview
	Software Installation
	Building Applications
	Automatic Installation (Builds LSP and API)
	Manual Installation

	Linux Driver Operation
	Compiler Directives and Build Features
	Troubleshooting
	Useful Linux system utilities
	Compilation Errors
	Run-time Errors

	Integrity® Support
	Introduction
	Integrity Installation
	Integrity PCI Driver Installation
	Building the CEI-x30 API with Multi
	Compiler Directives
	Monolith Image versus Dynamic Download
	CEI-x30 API Project Setup

	Building Integrity Applications

	BusTools/ARINC™ Data Bus Analyzer
	General Information
	BusTools/ARINC Demo Software

	Application Development with CEI-x30-SW
	Overview
	Windows Libraries
	Data Types, Constants, and API Routine Prototypes
	Time-tag Structure Definition
	Setting the Device Time

	Return Status Values
	Programming with the CEI-x30 API Interface
	Example Routines in C – Summary
	Tst_cnfg.c
	Config_from_file.c
	Multiprocess_test.c

	C# Support
	The Reference Solution
	The Managed Wrapper Class
	Adding the Managed Wrapper to an Existing .NET Application
	C# Managed Wrapper Functions

	Visual Basic and VB.NET Support
	Visual Basic Support
	Working with Unsigned Integers in Visual Basic
	Example
	Solutions

	AutoConfig ARINC Configuration File Generator
	Dealing with Complex Message Scheduler Transmit Scenarios

	Application Programming Interface
	Overview
	CEI-x30 API Source Files
	CDEV_API.C
	CDEV_API_A717.C
	CDEV_API_CFG_FILE.C
	CDEV_API_EXP_RX.C
	CDEV_API_EXP_TX.C
	CDEV_API_INTRPT.C
	CDEV_API_IRIG.C
	CDEV_API_LEGACY_API.C
	CDEV_API_PLX_PGM.C
	CDEV_API_RX_FILTER.C
	CDEV_API_SCHED.C
	CDEV_API_UTILITY.C
	CDEV_WIN.C
	CDEV_VXW.C
	CDEV_LNX.C
	CDEV_INT.C
	CDEV_LRT.C

	CEIx-30 API Header Files
	CDEV_API.H
	CDEV_GLB.H
	CEIX30_TYPES.H
	CEI_TYPES.H
	CDEV_API_CFG.H
	AR_ERROR.H
	CDEV_HW.H
	CEI_INSTALL.H
	CDEV_FW.H - Firmware Load Files

	Building the API for Embedded and Certified Systems
	Defining Custom Content in Your API Build
	Excluding Parameter Validation and Thread Protection
	Defining the Data Types Used in Your API Build

	API Data Types
	API Routines - Summary
	Initialization and Control Routines
	Device Control Routines
	Termination Routines
	Receive/Transmit Channel-level Configuration Routines
	Device-level Configuration Routines
	Receive Data Processing Routines
	Transmit Data Processing Routines
	Timer-related Routines
	Information and Status Routines
	Utility Routines

	AR_ASSIGN_SCHEDULER_START_OFFSETS
	AR_BOARD_TEST
	AR_BYPASS_WRAP_TEST
	AR_CLR_RX_COUNT
	AR_CLOSE
	AR_CHANNEL_CONFIGURATION_FROM_XML_FILE
	AR_CONFIG_CHANNEL_FROM_TXT_FILE
	AR_CONVERT_1553_TIME_TO_STRING
	AR_CONVERT_TIME_TO_STRING
	AR_DEFINE_MESSAGES_FROM_TXT_FILE
	AR_DEFINE_MESSAGES_FROM_XML_FILE
	AR_DEFINE_MSG
	AR_DEFINE_MSG_BLOCK
	AR_ENH_LABEL_FILTER
	Label Filtering
	Interrupt Generation

	AR_EXECUTE_BIT
	AR_GET_573_FRAME
	AR_GET_429_MESSAGE
	AR_GET_BASE_ADDR
	AR_GETBLOCK
	ARINC 429/575 Data Format
	ARINC 717 Data Format

	AR_GETBLOCK_T
	AR_GET_BOARDNAME
	AR_GET_BOARDTYPE
	AR_GET_CHANNEL_INDEX_INFO
	AR_GET_CONFIG
	AR_GET_DATA
	AR_GET_DATA_XT
	AR_GET_DEVICE_CONFIG
	AR_GET_573_CONFIG
	AR_GET_ERROR
	AR_GETFILTER
	AR_GET_LABEL_FILTER
	AR_GET_LATEST
	AR_GET_LATEST_T
	AR_GETNEXT
	AR_GETNEXTT
	AR_GETNEXT_XT
	AR_GET_RX_CHANNEL_STATUS
	AR_GET_RX_COUNT
	AR_GET_SNAP_DATA
	AR_GET_STATUS
	AR_GET_STORAGE_MODE
	AR_GET_TIME
	AR_GET_TIMERCNTL
	AR_GETWORD
	ARINC 429/575 Data Format
	ARINC 717 Data Format

	AR_GETWORDT
	AR_GETWORD_XT
	AR_GO
	AR_HW_INTERRUPT_BUFFER_READ
	AR_INTERRUPT_QUEUE_READ
	AR_INITIALIZE_API
	AR_INITIALIZE_DEVICE
	AR_HW_INTERRUPT_BUFFER_READ
	AR_INTERRUPT_QUEUE_READ
	AR_LABEL_FILTER
	AR_LOADSLV
	AR_MODIFY_MSG
	AR_MODIFY_MSG_BLOCK
	AR_NUM_RCHANS
	AR_NUM_XCHANS
	AR_OPEN
	AR_PUT_429_MESSAGE
	AR_PUT_573_FRAME
	AR_PUTBLOCK
	AR_PUTBLOCK_MULTI_CHAN
	AR_PUTFILTER
	AR_PUTWORD
	AR_QUERY_DEVICE
	AR_READ_SCHEDULED_MSG_BLOCK
	AR_RESET
	AR_RESET_TIMERCNT
	AR_SET_CONFIG
	AR_SET_DEVICE_CONFIG
	AR_SET_573_CONFIG
	AR_SET_MULTITHREAD_PROTECT
	AR_SET_ISR_FUNCTION
	AR_SET_ PRELOAD_CONFIG
	AR_SET_RAW_MODE
	AR_SET_ STORAGE_MODE
	AR_SET_TIME
	AR_SLEEP
	AR_SET_TIMERRATE
	AR_STOP
	AR_UPDATE_MSG_BLOCK
	AR_VERSION
	AR_WAIT
	AR_XMIT_SYNC

