

VxWorks User’s Manual
BusTools/1553-API

Supporting Products:

• QPCX-1553 • QCP-1553 • RXMC-1553

• QPMC-1553 • R15-AMC • RXMC2-1553

• R15-MPCIE • Q104-1553P • R15-LPCIE

• R15-EC • QPCI-1553 • QPM-1553

• QVME-1553

• RQVME2-1553

• RPCIE-1553

• RAR15-XMC-IT/RAR15XF

Copyrights

Copyright © 2009 -2019 Abaco Systems, Inc.

This software product is copyrighted and all rights are reserved. The distribution and sale of this
product are intended for the use of the original purchaser only per the terms of the License Agreement.

Confidential Information - This document contains Confidential/Proprietary Information of Abaco
Systems, Inc. and/or its suppliers or vendors. Distribution or reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS", WITH NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. ALL OTHER LIABILITY ARISING FROM RELIANCE ON ANY INFORMATION
CONTAINED HEREIN IS EXPRESSLY DISCLAIMED.

Microsoft is a registered trademark of Microsoft Corporation.

Windows is a registered trademark of Microsoft Corporation.

VxWorks is a registered trademark of WindRiver Systems Corporation.

Tornado is a registered trademark of WindRiver Systems Corporation.

Abaco Systems, Inc. acknowledges the trademarks of other organizations for their respective products
or services mentioned in this document.

BusTools/1553-API VxWorks User’s Manual

BusTools/1553-API Software Revision: 8.28
Hardware Revision: 6.17/6.11/6.09/6.08/6.03/5.18/4.6x/4.4x
Document Date: December 30, 2019
Document Revision: 1.2

Abaco Systems, Inc.
26 Castilian Drive, Suite B
Goleta, CA 93117
Main +1 805-965-8000 or +1 877-429-1553 (US only)
Support +1 805-965-8000 or +1 805-883-6097

avionics.support@abaco.com (email)

https://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:avionics.support@abaco.com
https://www.abaco.com/products/avionics
http://www.abaco.com/

Introduction

VxWorks is a real-time operating system (RTOS). The BusTools/1553-

API runs under VxWorks on PowerPC and Intel x86 processors. You

can also port BusTools/1553-API to other BSPs. There are two

VxWorks releases currently in use, VxWorks 6.x and VxWorks 7.

BusTools/1553-API supports operation with VxWorks 6.x and VxWorks

7; although, the driver and API can be built under VxWorks 5.5.1.

Currently the 6.x support covers versions 6.2 – 6.9.

BusTools/1553 supports both kernel modules with legacy device drivers

(for PCI/PMC and VME devices) and VxBus device drivers (for

PCI/PMC and PCI Express/XMC devices).

This document assumes a Tornado or Workbench environment and that you are familiar
with your specific system and VxWorks BSP. The most common configuration consists of
a Windows PC running the Tornado or Workbench and networked to the VxWorks system.
You may encounter differences with other system configurations.

Supported Products

The following Abaco Systems products are supported with VxWorks:

VxWorks 5.5 and VxWorks 6.2-6.6

 VME bus products: QVME-1553, RQVME2-1553

 PCI bus products: QPMC-1553, QPM-1553, QPCI-1553, QPCX-

1553, QCP-1553, and Q104-1553P, R15-EC, RXMC-1553,

RXMC2-1553, R15-PCIE, R15-LPCIE, RAR15-XMC, R15-PMC

VxWorks 6.7-6.9

 VME bus products: QVME-1553, RQVME2-1553

 PCI bus products (VxBus Gen1): QPM-1553, QCP-1553, Q104-

1553P, RXMC-1553, RXMC2-1553, RAR15-XMC-IT/RAR15XF,

R15-MPCIE and R15-PMC.

VxWorks 7.0 VxBus Gen2

 PCI bus products: QPM-1553, QCP-1553, RXMC-1553, RXMC2-

1553, RAR15-XMC-IT/RAR15XF, R15-MPCIE and R15-PMC.

Installation Options

There are two methods for installing and configuring your VxWorks

systems to interface with Abaco Systems Avionics PCI, PMC, PCIe, or

XMC products. One is a Common Driver model that builds a legacy

avionics PCI driver into the VxWorks kernel. You can use this method

for VxWorks 5.5 and 6.x. The Common Driver is designed for PCI and

PMC products. The other method is the VxBus Driver method with

Note:

VxWorks kernel versions 6.7 and greater. The VxBus Drivers provided

are designed to support PCI, PMC, PCI Express, and XMC products.

If you are incorporating Abaco Avionics VME 1553 products with your VxWorks-based
system, you should not use either of the VxBus or Common device drivers; instead build the
kernel with the VME bus support as provided in your BSP.

BusTools/1553-API Driver-Specific Compiler Directives

When building the BusTools/1553-API for use with the Common PCI

Driver option, in your API library project define the directive

VXW_DRIVER_OPTION. For the VxBus driver define the directive

VXW_VXB_DRIVER, and for the VxBus Gen2 driver define the

directive VXW_VXB_DRIVER for a DKM project and

VXW_DRIVER_OPTION for a RTP project.

VxBus Driver Installation

The VxBus Driver method provides a driver compatible with Wind

River’s VxBus infrastructure. The VxBus driver works with VxWorks

6.7 and greater, for PowerPC and Intel x86 processors.

VxBus Gen 1 Support for VxWorks 6.7 to 6.9

Installing the VxBus Gen 1 Driver Files

The following VxBus Driver and configuration files can be found in the

beneath the “\VxWorks Driver\VxBus Driver\VxBus1 Driver” folder in

the BusTools-1553-API VxWorks Distribution.

VxBus Driver Files Description

avioVxwDrv.c Avionics Common Driver

avioVxwDrv.h
Driver declarations and
definitions.

40avioVxwDrv.cdf Component Installation File.

Manually copy the driver files as follows.

Copy avioVxwDrv.c and avioVxwDrv.h, to:

[VxWorks_Directory]\]\ vxworks-6.x\target\config\comps\src

Copy 40avioVxwDrv.cdf to:

[VxWorks_Directory]\ vxworks-6.x\target\config\comps\vxWorks

Note:

Configuring VxBus Gen 1 Driver Operation

The follow table shows the driver configuration options.

Table 1. VxBus Gen 1 Driver Configuration Options

Parameter Description Default

AVIO_DEBUG

Setting this TRUE provides console
debug printout during boot and
initialization and inhibits execution of
the VxBus driver. If TRUE, you must
invoke avioDrvRegister2 from the
command line to install the driver.

FALSE

VXW_PCI_PPC
Enables big endian conversion (for
PPC)

FALSE

Abaco Avionics Board configuration is under the hardware section in the

component configuration for the kernel. You can select whether to

include Abaco Avionics Boards here. When selected, this adds the

driver into the kernel with the default settings. Modify those setting by

selecting options when you right-click on the Abaco Systems VxBus

Driver for Avionics Boards entry. A sample Abaco Avionics common

PPC VxBus Kernel Configuration file setup is shown below:

VxBus Gen 2 Driver Support (VxWorks 7)

To install the generic Abaco Systems’ Avionics common VxBus Gen2

driver support for VxWorks 7, there are two methods:

1. The first is to use the provided Abaco Systems RPM files with the

VxWorks installer to install the necessary files to build/configure

the driver.

2. The second method is to perform a manual installation which

involves copying the two folders “abaco_avio” and

“abaco_driver” located in the “\VxWorks Driver\VxBus

Driver\VxBus2 Driver” folder in the BusTools-1553-API

VxWorks Distribution.

To

 [Workbench_directory_path]/VxWorks-7/pkgs

After the installation the build options for the Abaco Systems Avionics

driver(s) will be available in a VxWorks 7 Source Build project as shown:

The Abaco Systems Avionics VxBus Gen 2 driver has the following build

options.

1. Select CPU: select either PPC or x86

2. Enable the VxBus IO Driver for RTP support: only needed if

requiring operational in an RTP environment.

3. Enable spinlocks for atomic access: optional protection in ISR

If you plan to create a new VxWorks 7 Source Build Project, once the

driver is installed it should be included in the build automatically;

however, if you are adding the Abaco Systems Avionics driver to an

existing VxWorks 7 Source Build Project, you must perform the following

steps:

a. Double-click on your VSB Source Build Configuration entry to

refresh the project.

b. Expand the “Build Targets” selection

c. Expand the “Layers” selection

d. Right-click on the “ABACO_DRIVER_4_01_00_00” layer and

select Build Layer

e. Right-click on the “ABACO_AVIO_1_0_0_0” layer and select

Build Layer

After the VxWorks 7 Source Build project has included the drivers a

VxWorks 7 Build Image project that includes this VSB will have the

drivers available to be included as shown:

4. Right-click on the Abaco Systems VxBus Driver for Avionics

Boards entry and select Include. This will include both drivers:

a. Abaco Systems VxBus Avionics Driver (primary

driver)

b. Abaco Systems Avionics VxBus IO Driver (secondary

driver for operating within an RTP environment)

5. Continue to Common Build Components to build the kernel image

with the VxBus Gen2 device driver.

Verify Abaco Avionics Boards Installed

Once you have your VxWorks kernel image built and running on your

target with your avionics board(s) installed, open a shell to the target and

invoke the function avioDeviceShow. This routine lists all detected

Abaco Avionics products in the discovered “Device ID” order that

should be referenced from your application for the respective boards

Common Driver Installation

The Common Driver method provides a driver and configuration files

that support VxWorks, 5.5 – 6.6 hosted on PowerPC and Intel x86

processors. The VxWorks kernel configuration process uses the

configuration files to install and configure the driver. This allows users

to customize the driver operation to match the BSP without having to

edit code.

Installing the Common Driver Files

The following files are the new Common Driver and configuration files.

Common Driver Files Description

CondorVxWRTPDrv.c Avionics Common Driver

CondorVxWRTPDrv.h Declarations and definitions for driver

51_GEFES_PPC_RTP_6x_PCI.cdf Component Installation File for PPC for 6.x

51_GEFES_x86_RTP_6x_PCI.cdf Component Installation File for x86 for 6.x

51_GEFES_PPC_55_PCI.cdf Component Installation File for PPC for 5.5

51_GEFES_x86_55_PCI.cdf Component Installation File for x86 for 5.5

gefes_ioctl.h ioctl defines

In addition to these files, you need to add the include files cei_types.h

and lowlevel.h to the driver configuration directories.

Manually copy the driver files after you install the BusTools/1553-API

software onto your system. Where you copy these files depends on the

version of VxWorks you are running.

For VxWorks 5.5, copy CondorVxWRTPDrv.c, CondorVxWRTPDrv.h,

gefes_ioctl.h, cei_types.h and lowlevel.h to:

[VxWorks_Directory]\target\config\comps\src

Copy 51_GEFES_PPC_55_PCI.cdf (PPC) or

51_GEFES_x86_55_PCI.cdf (x86) to:

[VxWorks_Directory]\target\config\comps\vxWorks

This adds the Abaco Systems Avionics Driver component to all BSPs

supported by your VxWorks Installation.

For VxWorks 6.x copy CondorVxWRTPDrv.c, CondorVxWRTPDrv.h,

gefes_ioctl.h, cei_types.h, lowlevel.h,

51_GEFES_PPC_RTP_6x_PCI.cdf (PPC), or

51_GEFES_x86_RTP_6x_PCI.cdf (x86) to:

[VxWorks_Directory]\vxworks-6.x\target\config\bsp_target_dir

For example, is you are using a pcPentium3 the directory is

[VxWorks_Directory]\vxworks-6.6\target\config\pcPentium

This adds the Abaco Systems Avionics Driver component to only that

BSP. If you are using multiple BSPs, you need to copy the files into all

appropriate directories.

Configuring Driver Operation

The follow table shows the driver configuration options.

Table 2. Driver Configuration Options

Parameter Description Target Default

VXW_PCI_PPC
Define PCI Compile for
PowerPC

PPC 5.x
and 6.x

TRUE
(PPC)

VXW_PCI_X86
Define PCI Compile for x86
and Pentium

x86 5.5 –
6.6

TRUE
(X86)

MAX_BTA
Maximum number of
devices supported

All 4

vxwdebug Enables debug print option All 0

VXW_SYS_BUS_MAP
Use sysBusToLocalAdrs to
map board address.
Required by some BSPs.

BSP
dependent

FALSE

VXW_X86_MAP_ADD

Adds boards PCI memory
to sysPhysMemDesc.
Needed for all VxWorks
Pentium kernel version,
except VxWorks 6.6

x86
VxWorks
5.5 – 6.5

FALSE

VXW_PCI_INT_CON
Use pciIntConnect in place
of intConnect.

All FALSE

SPIN_LOCK_PROTECT
Adds spinlocks for SMP.
VxWorks 6.6 only

x86 and
PPC
VxXorks
6.6

FALSE

IRQ_OFFSET
IRQ Offset used by some
BSPs.

BSP
Dependent

0

Modify these parameters to get the required driver operation.

Diagnostics Built into the Common Driver

CondorVxWRTPDrv.c has several built-in diagnostic functions. The

kernel configuration for Abaco Systems Avionic boards has the option

for debug print (vxwdebug). This option turns on the print macro during

the installation process. You can view the discovery and mapping of

each device during boot. However, for Pentium systems running on

VxWorks version 6.5 or earlier this takes place early in the boot process

and console print invocations are not displayed.

mapCondorPCIAddress in debug mode -> 0

PCI device found on bus 17

PCI device number = 1553

page_addr = 80000000

page_offset = 0

mem_base_region = 0

Found PCI memory region 0

PCI base address = 80000000

PCI region size = 800000

Mem base addr = 80000000

Complete with unit 0

PCI device found on bus 17

PCI device number = afd0

page_addr = 80800000

page_offset = 0

PCI unadjusted region size = 200

Found PCI memory region 0

PCI base address = 80800000

PCI region size = 1000

page_addr = 80900000

page_offset = 0

Found PCI memory region 2

PCI base address = 80900000

PCI region size = 100000

Mem base addr = 80800000

Complete with unit 1

mapCondorPCIAddress Complete 2

gefesInitPCI 0

gefes_pci_driver_control add driver 2

calling gefesPCIDrvCreate for device 0

gefesPCIDrvCreate for device 0

device_name = /gefesDev/0

calling gefesPCIDrvCreate for device 1

gefesPCIDrvCreate for device 1

device_name = /gefesDev/1

calling gefes_config_1553_devices for device 0

gefes_config_1553_devices 0

base addr = 80000000

Host_interface = 1902

Condor Device ID = 1553

1553 Qboard host interface = 1902

btype = 1

nchan = 4

dev_id = 110

gefes_config_pci_devices Complete for device 0

Using intConnnect on intProcess for IRQ 2a

Other Debug Functions

avioDeviceShow displays all Abaco boards installed in the

system

avioDeviceShow

2 Avionic I/O Device(s) Detected:

Unit Device ID Base address IRQ Channels UCA32 ARINC

 0 1553 0x80000000 0x2a 2 0 0

 1 afd0 0x80800000 0x28 0 0 0

memDescShow shows the content of the sysPhysMemDesc table. This
allows users to see if our boards are included in that

table. See gefBoardShow for device addresses.

-> memDescShow

entry 0

virtual addr 0x0

physical addr 0x0

size in bytes 1048576

entry 1

virtual addr 0x100000

physical addr 0x100000

size in bytes 250609664

 .

 .

 .

entry 9

virtual addr 0x40000000

physical addr 0x40000000

size in bytes 8388608

entry 10

virtual addr 0x60000000

physical addr 0x60000000

size in bytes 8396800

entry 11

virtual addr 0xe2000000

physical addr 0xe2000000

size in bytes 8192

VxW_GetMQID Returns the interrupt message queue ID for devices

using interrupts. You need this value for msgQShow.

VxW_GEetMQID 0

value = 250597712 = 0xeefd150

VxW_GetDevIRQ Returns the device IRQ value for the device.

-> VxW_GetDevIRQ 0

value = 25 = 0x19

VxW_Get1553DevID Returns the device ID of the device.

-> VxW_GetDevID 0

value = 5459 = 0x1553

VxW_GetDevChan Returns the channel count for the device.

-> VxW_GetDevChan 0

value = 2 = 0x2

VxW_Get1553HIF Returns the value of the host interface register for

1553 device.

-> VxW_GetHIF 0

value = 6274 = 0x1882

VxW_GetCardID Returns the board type.

-> VxW_GetCardID 0

value = 272 = 0x110

After boot, you can use the VxWork function devs to list all devices in

the system.

-> devs

drv name

 0 /null

 1 /tyCo/0

 1 /tyCo/1

 2 /aioPipe

 5 toucan:

 6 /vio

 7 /tgtsvr

 8 /gefesDev/0

 8 /gefesDev/1

All Abaco Systems Avionic devices are named /avioVxbDrvn. Where n

is the device number. That number is based on the host’s PCIbus

discovery order.

Installing the QVME-1553 or RQVME2-1553

The QVME-1553 and RQVME2-1553 are native VME bus 1553

interface boards with 1, 2, or 4 channels. To program a VME board you

will need to address both A16 and A32 (or A24) address space. Set the

A16 base address through on-board jumpers described in the “MIL-STD-

1553 Hardware Installation and Reference Manual” chapter 12 “QVME-

1553, VME-1553, QVXI-1553X, and VXI-1553 Installation”. The

factory default A16 address is 0xC3C0. The QVME -1553 and

RQVME2-1553 require 8 megabytes of memory and can use either A24

or A32 addressing. The A24/32 address is programmable.

You must program the A24 address to start at either 0x0 or 0x800000.

You must program the A32 address on an even 8-megabyte (0x800000)

boundary. Furthermore, the A32 address must fall within the defined

address-range for the BSP’s VME A32 address space. See the memory

map for your processor for information about the A32 address range.

Set the A24/A32 addressing mode and program the A24/32 address

through the board initialization routine, BusTools_API_InitExtended().

Use the following lines to initialize the QVME-1553 or RQVME2-1553

under VxWorks.

Status = BusTools_API_InitExtended(cardnum,

 0x10000000,// A32 Addr

 0xc3c0, // A16 Addr

 &pwFlag, // mode flag

 PLATFORM_PC

 QVME1553, // Board type

 NATIVE_xx,

 Channel_n,

 CARRIER_MAP_Axx);

Where n = the Channel number 1, 2, 3, or 4 and xx = the map address

bits 24 or 32.

The BusTools/1553-API installation contains the object modules for the

API in formats for the PowerPC G3 and G4 processor. You can

download these object modules to any PowerPC.

PCI/PMC Board Mapping

BusTools/1553-API can control up to 16 1553 interface channels on up

to 16 1553 boards. During boot up, mapCondorPCIAddress() determines

the number and type of Abaco Systems 1553 boards in the system.

If you only have one 1553 board installed, it is always device 0. If

multiple boards are installed, the device number starts at zero and

increments by one for each board installed. The device number assigned

to a board depends on how the system enumerates the boards. Use

BusTools_API_OpenChannel() to initialize 1553 channels on PCI or ISA

boards. BusTools_API_OpenChannel() takes the device, channel and

operating mode, returns status and sets the card number.

UINT VxW_GetCardID(UINT cardnum) returns the board type. This

is the board type (PCI1553, QPCI1553 for example) by card number.

Returns 0xf if cardnum is not present.

UINT VxW_GetDevChan(UINT device) return the number of

channels for each device. Returns 0xf if device is not present

UINT VxW_GetDevID(UINT device) returns the board type by

device number. Return 0 if device not present

UINT get_device(UINT cardnum) returns the device number for each

cardnum. Returns 0xf if device is not present.

VxWorks Interrupts

VxWorks supports interrupt processing. Applications should use

BusTools_RegisterFunction() to process interrupts (the same method as

Windows and UNIX), referred to as high-level interrupts. The

advantage of using BusTools_RegisterFunction() is that it provides

common interrupt processing across all operating systems and it pre-

processes the interrupt data before calling the user function. The

disadvantage in using BusTools_RegisterFunction() is that it can

increases the latency of the interrupt. There is an option

EVENT_IMMEDIATE to reduce latency in some cases.

Interrupt handling can vary among the PPC BSPs. Some BSPs may not

be compatible with this interrupt configuration. If not, you will need to

set up interrupts by editing rtp_int_setup.c. Each processor has a specific

method for connecting and disconnecting interrupts to the interrupt

service routine. Review the PCI interrupt section of the BSP reference to

find out the how to connect and disconnect interrupts.

The BusTools_RegisterFunction() interrupt method can use both

pthreads or VxWorks native thread as options. The default is native

VxWorks threads. This allows compatibility to VxWorks versions 5.4

and earlier. If you want to use POSIX threads you can define _POSIX_

(#define _POSIX_) in your target block in target_defines.h and

recompile the API library. If you select the POSIX option, your

VxWorks image must support both POSIX threads and POSIX timers.

BusTools_RegisterFunction() passes the user callback function in the

API_INT_FIFO structure. Refer to the BusTools-1553/API Reference

manual for information on BusTools_RegisterFunction() and the

API_INT_FIFO structure.

PCI Interrupts

The VxWorks-specific portion of the API provides PCI interrupt

processing in int_setup.c. This file contains the setup and processing for

interrupts based on the PowerPC and x86 architectures.

Int_setup.c handles connecting the interrupt to the interrupt service

routine (ISR). This method varies for different PowerPC and x86

processors. You need to select the version of the API matching your

processor. If you have a processor not supported by this file you will

need to modify the code to correctly connect the interrupt to the ISR.

There is a single interrupt for each 1553 device no matter how many

channels are on that device. The interrupt service routine determines

which channel(s) on the device is interrupting, clears the interrupt and

starts the user interrupt processing function.

VME Interrupts

The VxWorks-specific portion of the API provides VME interrupt

processing in the file vme_int_setup.c. This file also uses binary

semaphores to control the deferred processing. With VME interrupts,

you must select the interrupt level and interrupt vector. There is a single

interrupt level for a VME board, but each channel can use a unique

interrupt vector. The vme_int_setup.c has default setting for these values

for four 4-channel QVME-1553 and RQVME2-1553 boards. You can

set your own values by calling BusTools_SetIntVector(int cardnum, int

vector) and BusTools_SetIRQ_LVL(int cardnum, int irq). Use the same

level for all channels on a QVME-1553/RQVME2-1553 board.

Building BusTools/1553-API

Build BusTools/1553-API as a downloadable application or a static

library by creating the respective application project in Tornado or

Workbench and adding the following source files:

 bc.c

 bm.c

 bit.c

 btdrv.c

 discrete.c

 ei.c

 flash_config.c

 hwsetup.c

 init.c

 rt.c

 time.c

 notify.c

 CEI_VXW_INTERRUPT_FUNCTIONS.c

 mem_vxWorks.c

 vxw_int_setup.c (for PCI/PMC/XMC boards only)

 vxwBoardSetup.c (for PCI/PMC/XMC boards only)

 vme_int_setup_vme.c (for VME/VXI boards only)

 vxwBoardSetupVME.c (for VME/VXI boards only)

The following list shows the include files (.h) needed to build the API.

 apiint.h

 busapi.h1

 target_defines.h (included by busapi.h)

 cei_types.h (included by busapi.h)

 btdrv.h

 avioVxwDrv.h (for a VxBus Driver based project only)

 globals.h

 lowlevel.h

1 busapi.h includes target_defines.h which has target specific

definitions. You define a macro to select a target definition block

in target_defines.h that matches your processor. There is a set of

pre-define blocks for supported processors. See below.

You can find these files in the BusTools-1553-API/Source folder in the

VxWorks Distribution.

When building the API using Tornado, Workbench, or command line,

you must define a macro that tells the API the target processor type.

There are pre-defined macros for the processors supported under

VxWorks.

VXW_PCI_PPC is for default PowerPC devices. There are two BSP

requirements to use this macro. One is that the base of address of the

board does not require any BSP specific mapping function

(sysPciMemToLocalAdrs for example) and the other is to use the

interrupt line value is unmodified. For RTP projects, all PowerPC BSPs

use the same mapping, so you need to consider only the interrupt line.

The following list shows the pre-defined macro definitions.

VXW_PCI_X86 any PCI, PMC, or ISA board on x86 BSP

VXW_PCI_PPC PCI (PMC) boards on PowerPC

VXW_VME_PPC VME boards on PowerPC

VXW_VME_X86 VME boards on Intel x86

VXW_DRIVER_OPTION Define when using the Common Driver.

VXW_VXB_DRIVER Define when using the VxBus driver

These macros select pre-defined “target_defines.h” blocks. Configure

the API to include or exclude features by editing the selected block. You

can also customize that block to fit your processor and BSP definitions.

If you are running Tornado, define the macro by adding it to the

Workspace, project build tab, C/C++ compiler window. Remove the

–ansi (GNU) or Xansi (DIAB) directive before compiling the

BusTools/1553-API. You can also add paths to source and include files

in this window.

If you are building from the command line, define the macro in your API

Makefile. Add the paths to the include files and source files to the

Makefile. Do not define the –ansi (GNU) or Xansi (DIAB) compiler

directive.

Target_defines.h

Each processor/bus combination in the list above has a block of defines

in the target_defines.h file. These blocks configure the API for the target

processor and operating environment. You can also customize the API

using define blocks. The code example below shows the define block for

the native PCI board on a PowerPC (VXW_PCI_PPC). Modify the

configuration of the API by changing the statements in this block. For

example, if your VxWorks target has a file system, define

FILE_SYSTEM to enable the API to dump data to a file. Defining

DO_BUS_LOADING configures the API to gather bus-loading statistics.

See the following list for a description of all target define symbols.

/**

* Target Defines for VxWorks PowerPC or PCI boards

**/

#if defined(VXW_PCI_PPC) */

 #include <string.h> /* for mset */

 #define MAX_BTA 16 /* Defines board and channels */

 #define _UNIX_ /* UNIX definitions */

 #define _GCC_ /* Using GCC compiler */

 #define PPC_SYNC /* enforce sync */

 #define VXWORKS /* */

 #undef USE_BM_DMA /* */

 #undef _Windows /* */

 #undef __WIN32__ /* */

 #undef INCLUDE_VME_VXI_1553 /* */

 #undef ERROR_INJECTION /* Error injection Disabled */

 #undef FILE_SYSTEM /* Dump output functions */

 #define NON_INTEL_BIT_FIELDS /* Intel Bit Ordering */

 #define NON_INTEL_WORD_ORDER /* Intel Word Ordering */

 #define WORD_SWAP /* define the flipw macro */

 #undef ADD_TRACE /* Exclude trace code */

 #undef DO_BUS_LOADING /* Exclude bus loading code */

 #define NO_HOST_TIME /* no host time available */

 #define POSIX_MSG_QUEUE /* use POSIX message queues */

 /* the following are the O/S specific definitions */

 /* mutexes and events */

 #define CEI_MALLOC(a) malloc(a) /* memory alloc */

 #define CEI_FREE(a) free(a) /* memory free */

 #define CEI_REALLOC realloc /* */

 #undef _POSIX_ /* POSIX or native VxWorks */

 #ifdef _POSIX_ /*

 #include <pthread.h> /* Use this for VxWorks 5.5 */

 #define CEI_MUTEX pthread_mutex_t /* define mutex type */

 #define CEI_THREAD pthread_t /* define thread type */

 #define CEI_EVENT pthread_cond_t /* define event */

 #define CEI_HANDLE int /* define handle */

 #else /* Native VxWorks Threads */

 #include <msgQLib.h> /* Using Message Queue */

 #include <semLib.h> /* Use mutual exclusion semaphore */

 #include <timers.h> /* Timer data type include */

 #include <taskLib.h> /* */

 #define CEI_MUTEX SEM_ID /* define mutex */

 #define CEI_THREAD int /* define thread */

 #define CEI_EVENT MSG_Q_ID /* define event */

 #define CEI_HANDLE int /* define handle */

 #endif /* POSIX_ */

 #define TIMER_THREAD /* use timer thread */

 void MSDELAY(int msec); /* */

 #define VXW_TASK_OPTION 0 /* VX_FP_TASK, VX_SPE_TASK */

#endif /* end VXW-PCI-PPC */

/***/

Building BusTools/1553-API as a Downloadable Application or
Static Library in Tornado

The installation contains the BusTools/1553-API source code. This

allows you to modify API source to customize execution. If you make

changes, you need to rebuild the API. You also need to re-compile if

you make any changes in target_defines.h. If you are running Tornado,

use the following steps.

1. Create a new download application project.

Figure 1. Creating a Download Application Project in Tornado Workspace

2. Add the API source files to the project.

Figure 2. Adding API Source files to Tornado Project

3. Add the symbol definition for your processor type.

4. Add the path to the include files. You need the path to BusTools-

1553-API/Include and BusTools-1553-API/Source.

5. Edit the project properties window to define symbols and add the

include paths.

Figure 3. Editing the Tornado Project Properties

6. Build the downloadable application.

7. Download the API.

You can also use these steps to create your own applications calling API

functions. Add your file in place of the API source files.

If you prefer to compile the API into a static library (archive file), you

can select the Rules tab on the Properties Window and select the archive

option.

The API compiles as a static library (.a) file. You can then link your

application to this archive by going to the Macros tab for your

application properties window and add the library to PRJ_LIBS macro.

VxW_Demo.c Test Program

The API distribution includes an example program named

VxW_Demo.c. Use this program to test your installation. VxW_Demo.c

sets up a Bus Controller, Bus Monitor and four Remote Terminals and

provides the option to view the data from each of these operations. You

can also use VxW_Demo.c as a guide for programming with the

BusTools/1553-API.

Download VxW_Demo.out after you boot up and load the API.

Enter:

demo device, channel

in the command shell to start the application running. Where device is

the device number and channel is the channel number (0 - 3, depending

on board type). For VME boards enter the A16 address of the board in

device parameter and A32 address in the channel parameter.

If VxW_Demo initializes without error, you see the following:

-> Using BusTools_RegisterFunction to process interrupts

interrupt mode is Software 1

Calling Open Channel with mode = 1

Initializing channel 0 on device 0

Initialization status = 0

BusTools_BM_Init status = 0

BusTools_SetBroadcast status = 0

VxW_Demo:

Start the BM (1), BC (2) and RT (3). To display data

type:

c - for Bus Montroller

r - for Remote Terminal

m - for Bus Monitor

Select options from Menu below...

Hit q to Exit

Type 1 to start the Bus Monitor

Type 2 to start the Bus Controller

Type 3 to start the Remote Terminal

Type 4 to stop the Bus Monitor

Type 5 to stop the Bus Controller

Type 6 to stop the Remote Terminal

Type C for Bus Controller output - 'x' to quit

Type M for Bus Monitor output - 'x' to quit

Type R for Remote Terminal output - 'x' to quit

Type E for External Bus

Type I for Internal Bus

Type D for Direct Couple

Type T for Transformer Couple

Type V for Version information

Type W for Cable Wrap Test

Type A for Aperiodic Message

Type B for Internal BIT test

Type H for lists of commands

If you have a multi-function card, you can run the BC, RT, and BM

functions together. VxW_Demo displays message traffic to the screen.

Type C, R, or M to display the messages to the screen. The message

scrolls on the screen until you type an ‘x’. Below is a display of this

information for the Bus Controller.

BC Time-tag = (3257)18:18:01.743362
BC->RT (0-1)
BC**RT-2
BC**SA-2
BC**WC-2
BC**status-1 0x1000
BC**int_stat-0x00010000
BC**2000 BC**2001

BC Time-tag = (3257)18:18:01.743362
BC**RT->BC (1-2)
BC**RT-3
BC**SA-3
BC**WC-3
BC**status-1 0x1800
BC**int_stat-0x00010000
BC**f003 BC**f003 BC**f003

BC Time-tag = (3257)18:18:01.743362
BC->RT (2-3)
BC**RT-4
BC**SA-4
BC**WC-4
BC**status-1 0x2000
BC**int_stat-0x00010000
BC**4000 BC**4001 BC**4002 BC**4003

BC Time-tag = (3257)18:18:01.743362
BC**RT->BC (3-4)
BC**RT-5
BC**SA-5
BC**WC-5
BC**status-1 0x2800

BC**int_stat-0x00010000
BC**f005 BC**f005 BC**f005 BC**f005 BC**f005

If you have a single function board, you can only run one function at a

time per channel. Select BC, RT, or BM and stop one function before

starting another. Running the BC function will allow you to display BC

messages. If you run the BM or RT function, you need to connect to an

external 1553 bus to display data.

If you want to check out interrupts with VxW_Demo then pass 2 for the

“int_mode”. This will set up interrupts on RT messages. The interrupt

callback function prints data to the console screen (not the shell). You

should start VxW_demo and select the 1, 2, and 3 options to start the BC,

RT, and BM. The RT interrupt data appears on the console. If you have

a single function board you can only run a single function at a time, so

start the RT and connect to a MIL-STD-1553 bus with messages sent to

RT 2, 3, 4, and 5.

For further information about programming with the BusTools/1553-

API, refer to the “BusTool/1553-API Reference Manual”.

Initializing the API

VxWorks API requires the use of either BusTools_API_OpenChannel()

or BusTools_API_InitExtended() to initialize the board. PCI boards

including PMC on PowerPC can use either initialization function. VME

boards must use BusTools_API_InitExtended(). Here are examples of

this API call for various 1553 boards.

RQVME2-1553 or QVME-1553 on a PowerPC or x86

status = BusTools_API_InitExtended(

cardnum, // Handle to 1553 channel.

// Used with all other API

 // calls

0x10000000, // base memory address.

0xc3c0, // base A16 register

 // address. default=0xc3c0

&flag, // pointer to “int”, set=1

PLATFORM_PC, // Fixed platform value

VME1553, // Card type

NATIVE_32 // carrier type use NATIVE_32

or NATIVE_24

CHANNEL_x, // Channel number x=1,2,3,4

CARRIER_MAP_A32); // Mapping A24 or A32

VME devices are identified by their A16 and A32 addresses. You must

have unique addresses for each VME device in the chassis.

All Plug-n-Play boards on a PowerPC or Intel x86

Status = BusTools_API_OpenChannel(

 &cardnum, // A pointer to cardnum

mode, // Same as pwFlag, not a pointer

device, // The device number

CHANNEL_x); // Channel number x=1,2,3, or 4

The device is always 0 if you have only a single board installed. If you

have multiple boards, the device number is determined by how the PCI

bus enumerated the boards. You need to find out the device number for

each 1553 board. Device numbers start at 0 and increment for each

device. Refer to the BusTools1553-API Reference Manual for more

information and examples on Initialization.

Notes

ANSI option

VxWorks normally includes the –ansi compiler directive. This option

does not recognize C++ style comments (//). You need to delete this

directive or convert C++ style comments to standard C style comments

(/* …*/) for correct compiles.

#pragma alignment

VxWorks uses the keyword “__attribute__” to get the correct alignment.

This allows you to specify special attributes of variables or structure

fields. You must use the keyword with every variable and structure

element requiring the attribute.

__attribute__ ((aligned(n))) specifies the minimum alignment for the

variable or structure field in bytes, where n = byte alignment.

__attribute__ ((packed)) packs the data leaving no gaps.

The following example shows alignment and packing of a structure to

ensure that it is six bytes. Without adding the “__attribute__” keyword,

this structure is eight bytes long and padded with zeros when compiled

with the GNU CC compiler for an x86 target.

typedef struct rt_cbuf

 {

 BT_U32BIT legal_wordcount __attribute__ ((aligned(2),packed));

 BT_U16BIT message_pointer __attribute__ ((aligned(2),packed));

 } RT_CBUF;

Above, packed and aligned are used in a single “__attribute__”

declaration. Refer to the GNU CC reference manual for more

information on the “__attribute__” keyword.

Endian-ness

The Intel x86 processor uses little Endian bit ordering, while PowerPC

processors use big Endian bit ordering. The following lines are added to

Busapi.h when using a PowerPC.

/* Big Endian Ordering */

#define NON_INTEL_BIT_FIELDS /* Motorola Bit Ordering */

#define NON_INTEL_WORD_ORDER /* Motorola Word Ordering */

When converting between the two processors make sure you define these

macros for PowerPC and “undef” them for Intel x86 Processors. Some

PowerPC processors have PMC slots. If you are using a PowerPC with

the PMC-1553, you need to define the WORD_SWAP symbol or use the

Little Endian ordering available on some PowerPCs. The

BusTools/1553-API automatically defines the correct symbols based on

the processor type you specify when you build the API.

	Introduction
	Supported Products
	VxWorks 5.5 and VxWorks 6.2-6.6
	VxWorks 6.7-6.9
	VxWorks 7.0 VxBus Gen2

	Installation Options
	BusTools/1553-API Driver-Specific Compiler Directives

	VxBus Driver Installation
	VxBus Gen 1 Support for VxWorks 6.7 to 6.9
	Installing the VxBus Gen 1 Driver Files
	Configuring VxBus Gen 1 Driver Operation

	VxBus Gen 2 Driver Support (VxWorks 7)
	Verify Abaco Avionics Boards Installed

	Common Driver Installation
	Installing the Common Driver Files
	Configuring Driver Operation
	Diagnostics Built into the Common Driver
	Other Debug Functions

	Installing the QVME-1553 or RQVME2-1553

	PCI/PMC Board Mapping
	VxWorks Interrupts
	PCI Interrupts
	VME Interrupts

	Building BusTools/1553-API
	Target_defines.h
	Building BusTools/1553-API as a Downloadable Application or Static Library in Tornado

	VxW_Demo.c Test Program
	Initializing the API
	RQVME2-1553 or QVME-1553 on a PowerPC or x86
	All Plug-n-Play boards on a PowerPC or Intel x86

	Notes
	ANSI option
	#pragma alignment
	Endian-ness

