

User’s Manual
P-708

Copyrights

User’s Manual Copyright © 2006 -2019 Abaco Systems, Inc.

This software product is copyrighted and all rights are reserved. The distribution and sale of this product
are intended for the use of the original purchaser only per the terms of the License Agreement.

Confidential Information - This document contains Confidential/Proprietary Information of Abaco
Systems, Inc. and/or its suppliers or vendors. Distribution or reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS", WITH NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL
OTHER LIABILITY ARISING FROM RELIANCE ON ANY INFORMATION CONTAINED HEREIN IS
EXPRESSLY DISCLAIMED.

Microsoft is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
VxWorks is a registered trademark of WindRiver Systems Corporation.
Tornado is a registered trademark of WindRiver Systems Corporation.
Integrity is a registered trademark of Green Hills Software Incorporated.
LabVIEW is a registered trademark of National Instruments Corporation.

Abaco Systems, Inc. acknowledges the trademarks of other organizations for their respective products or
services mentioned in this document.

P-708 User’s Manual (1500-060)

Software Revision: 3.30
Document Revision: 3.30
Document Date: 16 September 2019

Abaco Systems, Inc.
26 Castilian Drive, Suite B
Goleta, CA 93117
Main +1 805-965-8000 or +1 877-429-1553
Support +1 805-883-6097

avionics.support@abaco.com (email)

https://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:avionics.support@abaco.com
https://www.abaco.com/products/avionics
http://www.abaco.com/

P-708 User's Manual i

Contents and Tables

Contents

Chapter 1 Introduction.. 1

Overview ... 1

ARINC 708 PMC Specifications .. 1

PMC/PCI Interface .. 1

Typical Power Consumption ... 2

Calculated Mean Time between Failure (MTBF) 2

Operating Temperature .. 2

Weight ... 2

PCI Memory Map ... 3

Board Layout .. 3

I/0 Connections ... 5

Input/Output Connectors ... 5

Input/Output Connector Pin-out .. 5

Adapter Cable .. 8

ARINC 708 Bus Coupling .. 8

Transformer-coupled Method .. 10

Direct-coupled Method .. 10

ARINC 708 PMC Bus Coupling Selection ... 11

Bus Cables and Connectors .. 11

Bus Terminators .. 12

Bus Couplers and T Connectors ... 12

RFI Caps ... 13

External Wrap Connection.. 14

Weather Radar and Radar Display Connection 15

P-708 User's Manual ii

Chapter 2 P-708-SW Windows Installation 17

Software Installation under Windows ... 17

Hardware Installation .. 18

Device Driver Installation under Windows 18

Installation Verification ... 19

Chapter 3 Linux Installation 21

Overview ... 21

Software Installation ... 21

Building the Distribution .. 22

Linux Driver Operation .. 23

Troubleshooting .. 23

Useful Linux system utilities ... 24

Compilation Errors .. 24

Run-time Errors ... 24

Chapter 4 VxWorks Installation 25

Overview ... 25

Building a VxWorks Image .. 25

Using the Sample Program ... 29

Building the API and Sample Program with Workbench 30

Target-specific Compiler Directives ... 33

Chapter 5 Integrity Support 35

Introduction ... 35

Integrity Installation .. 35

Integrity PCI Driver Installation .. 36

Building Integrity Applications ... 36

Building the ARINC 708 API with Multi ... 36

Chapter 6 LabVIEWTM Support 41

Introduction ... 41

Example VI and Project .. 41

Functional VI Set .. 42

LabVIEW Real-Time .. 42

Installation in a LabVIEW Real-Time PXI/ETS System 42

P-708 LabVIEW Real-Time API Library.. 42

P-708 LabVIEW Project .. 43

P-708 Device Indexing .. 43

Troubleshooting ... 43

P-708 User's Manual iii

Chapter 7 ARINC 708 PMC Product Features 45

Overview ... 45

ARINC 708 Protocol Support ... 45

Receive Frame Time-tagging.. 45

Receive Frame Storage ... 46

Transmit Frame Storage and Transmission .. 46

Periodic Sweep Transmission ... 47

Error Injection ... 47

Chapter 8 P-708-SW Distribution and API 49

Overview ... 49

API Source Files ... 49

P708_API.C ... 49

P708_API.H ... 49

P708_GLB.H ... 50

AR_ERROR.H .. 50

P708_HW.H .. 50

FPGA_708.H ... 50

CEI_TYPES.H ... 50

P708_WIN.C ... 50

P708_VXW.C .. 50

P708_INT.C ... 51

P708_LNX.C ... 51

P708_UTIL.C .. 51

P708_SCH.C ... 51

P708_API.DEF and P708_API64.DEF ... 51

Windows Libraries .. 52

Programming with the ARINC 708 API Interface 52

Time-tag Data Definition .. 53

ARINC 708 API Defined Data Types .. 53

Return Status Values ... 53

Example Routines – Summary ... 54

TST_CNFG.C .. 54

P708ECHO.C and P708UTIL.C .. 55

SINGLE_FRAME_SWEEP.C .. 56

.NET Development Support ... 57

API Routines - Summary .. 57

Initialization and Control Routines .. 57

Device Control Routines ... 57

Termination Routines .. 58

Configuration Routines.. 58

Receive Data Processing Routines .. 58

Transmit Data Processing Routines ... 58

P-708 User's Manual iv

Information and Status Routines ... 59

Utility Routines ... 59

P708_BOARD_TEST ... 60

P708_BYPASS_WRAP_TEST .. 61

P708_CLOSE ... 62

P708_EXECUTE_BIT.. 63

P708_GET_BASE_ADDR ... 65

P708_GET_BOARDTYPE .. 66

P708_GET_CHANNEL_CONFIG .. 67

P708_GET_ERROR ... 70

P708_GO .. 71

P708_INITIALIZE_API ... 72

P708_INITIALIZE_DEVICE ... 73

P708_OPEN .. 74

P708_READ_FRAMES ... 75

P708_READ_FRAME_DATA .. 77

P708_READ_FRAME_DATA_T .. 78

P708_RESET .. 79

P708_SET_CHANNEL_CONFIG ... 80

P708_SET_MULTITHREAD_PROTECT .. 84

P708_STOP .. 85

P708_UPDATE_FRAME_DATA .. 86

P708_UPDATE_FRAME_DATA_WEI .. 87

P708_ UPDATE_EI_DATA ... 88

P708_VERSION ... 89

P708_WAIT .. 90

P708_WRITE_FRAMES.. 91

P708_WRITE_FRAME_DATA ... 93

P708_WRITE_FRAME_DATA_WEI ... 95

P708_WRITE_EI_DATA ... 97

P708_READ_DEVICE ... 99

P708_WRITE_DEVICE ... 100

Chapter 9 ARINC 708 PMC Hardware Interface 101

Overview ... 101

PCI Configuration Space .. 102

Host Memory Map .. 103

Hardware Registers and Memory ... 104

Control Register ... 104

Frame Data Start Address Register ... 105

Frame Data Stop Address Register .. 106

Ancillary Data Start Address Register ... 106

Ancillary Data Stop Address Register ... 107

P-708 User's Manual v

Frame Bit Count Register .. 107

Frame Count Register .. 108

Transmit Frame Interval Register .. 108

Transmit Sweep Frame Count Register ... 108

Transmit Sweep Interval Register ... 109

Transmit Sweep Count Register .. 109

Firmware Revision Register .. 109

Temp Sensor Read Command Register ... 109

Temp Sensor Write Command Register .. 110

Ancillary Data Buffer .. 110

Appendix A Protected Frame Update Feature 113

Overview ... 113

p708_frame_transmit_start ... 114

p708_frame_transmit_stop ... 115

p708_request_frame_transmission ... 116

P-708 User's Manual vi

Figures
Figure 1. P-708 ... 3

Figure 2. P-708-C ... 4

Figure 3. RP-708 ... 4

Figure 4. 68-pin Front-Panel Receptacle Connector 5

Figure 5. The CONPMC-708 Adapter Cable ... 9

Figure 6. RP-708/P-708 Coupling Shunt Selection 11

Figure 7. ARINC 708 Bus Cable .. 12

Figure 8. ARINC 708 Bus Terminator ... 12

Figure 9. ARINC 708 Bus Coupler (Transformer-coupled) 13

Figure 10. ARINC 708 Bus Coupler (Direct-coupled) 13

Figure 11. RFI Cap ... 14

Figure 12. External Wrap Connection .. 14

Figure 13. P-708 WXR Radar or Display Connection 15

Figure 14. Linux Installation Directory Structure 22

Figure 15. Integrity PCI Driver Installation .. 36

Figure 16. Example P-708 Integrity Library Project Setup 37

Figure 17. Example P-708 Integrity Library Project Options 38

Figure 18. Example P-708 Integrity Application Project Setup 38

Figure 19. Example P-708 Integrity Application Project Options 39

Figure 20. Adding a MemoryPoolSize Entry ... 39

Figure 21. Modifying the Value for the DefaultStartIt Attribute 40

Tables
Table 1. Power Consumption.. 2

Table 2. Mean Time between Failure (MTBF) ... 2

Table 3. Weight .. 2

Table 4. PCI Memory Map ... 3

Table 5. Input/Output Connector .. 5

Table 6. P-708 Front I/O Connections .. 6

Table 7. RP-708 Front I/O Connections ... 6

Table 8. P-708-C P14 Rear I/O Connections .. 7

Table 9. RP-708 P14 Rear I/O Connections ... 7

Table 10. Transmission Media Characteristics 10

Table 11. ARINC 708 Product PCI Configuration Space 102

Table 12. ARINC 708 Product Host Memory Map 103

Table 13. Control Register Fields ... 104

Table 14. Error Injection Data Word Fields ... 111

P-708 User's Manual 1

CHAPTER 1

Introduction

Overview

The ARINC 708 PMC product line consists of the RoHS compliant RP-

708 and legacy P-708/P-708-C two-channel ARINC 708 Weather Radar

Display Data Bus interface products, supporting variable frame size and

definition using standard 1MHz Manchester II Bi-Phase encoding. Each

module is supported standalone, or adapted to the PCIe, PCI and cPCI

busses through the appropriate PMC carrier. Conductive-cooling and

rugged configurations are available with the RP-708 product, having I/O

on the PMC P14 connector.

ARINC 708 PMC Specifications

All ARINC 708 PMC products are built to the PMC draft standard IEEE-

P1386.1. Additionally, the P-708-C and RP-708 conform to Conductive

Cooled PMC Standard ANSI/VITA 20-2001 (R2005).

PMC/PCI Interface

◼ Standard single width CMC module per IEEE P1386 draft standard.

◼ +5V and +3.3V PCI bus signaling compatibility and universal

keying.

◼ 66 MHz, 32 bit PCI bus operation.

◼ Shared Memory consisting of 2 megabytes of SRAM allocated for

ARINC 708 frame Data.

Introduction ARINC 708 PMC Specifications

P-708 User's Manual 2

Typical Power Consumption

Table 1. Power Consumption

Board +3.3V +5V
P-708/P-708-C 325mA 275 mA

RP-708 - 784 mA

The RP-708 power was measured at ambient with both channels

transmitting at 97% bus duty cycle into 78 ohm loads and the host

accessing Frame Data buffer. The 5V supply was measured at

5.12V so the total power usage was 4.0W. Externally, each load

was dissipating 1W. Thus, 2W were being dissipated on-board.

Calculated Mean Time between Failure (MTBF)

The reliability calculation model for the P-708/P-708-C was MIL-

HDBK-217F and MIL-HDBK-217FN2 was used for the RP-708.

Table 2. Mean Time between Failure (MTBF)

Board Ambient
Temperature

Operating
Environment

MTBF

P-708/P-708-C +25° C ground benign 582,000 hrs.

RP-708 +25° C ground benign, controlled 2,220,766 hrs.

Operating Temperature

 -40° to +85° C.

Weight

Table 3. Weight

Board Weight
P-708 3.1 ounces

P-708-C 1.9 ounces

RP-708
1.8 ounces

(excluding front I/O connector)

Introduction PCI Memory Map

P-708 User's Manual 3

PCI Memory Map

Table 4 documents the PCI memory map interface definition for the

ARINC 708 products.

Table 4. PCI Memory Map

Region Type P-708-C
P-708 Size

RP-708
Size

Description

Configuration Configuration 64 bytes 64 bytes PCI configuration space

PCI BAR0 Memory 128 bytes 512 bytes
PCI interface local
configuration registers

PCI BAR1 I/O 0 256 bytes not used

PCI BAR2 Memory 4 Mbytes 4 Mbytes ARINC 708 host interface

PCI BAR3 n/a 0 0 not used
PCI BAR4 n/a 0 0 not used

PCI BAR5 n/a 0 0 not used

Board Layout

The following illustrations show the component layout of the P-708, P-

708-C, and RP-708 products in standalone configurations.

Figure 1. P-708

Introduction Board Layout

P-708 User's Manual 4

Figure 2. P-708-C

Figure 3. RP-708

Introduction I/0 Connections

P-708 User's Manual 5

I/0 Connections

Input/Output Connectors

The RP-708 supports I/O via the front panel or rear I/O via the PMC

connector P14. The P-708 only supports front I/O while the P-708-C

only supports rear I/O.

For the front I/O ARINC 708 boards RP-708 and P-708, the mating

connector described in Table 5 is compatible with the front panel 68-pin

SCSI connector. The adapter cable, CONPMC-708 for the P-708 or

RCONPMC-708 for the RP-708 is supplied to use with this connection

(see Figure 5).

The P-708-C rear I/O is routed through the PMC connector P14, with the

pin-out described in Table 8. The RP-708 rear I/O pin-out is described in

Table 9.

Table 5. Input/Output Connector

Part No. Description Manufacturer
750913-7 or 1-750913-7 Front Panel 68 pin SCSI-3 AMP/Tyco

Front I/O Connector Pin-out

The RP-708 68-pin front panel connector pin-out definition is described

in Table 7. The P-708 68-pin front panel connector pin-out definition is

described in Table 6. Figure 4 shows the view facing the receptacles of

the 68-pin Front-Panel Receptacle Connector (SCSI-3-compatible with

Rails and Latch Blocks).

Figure 4. 68-pin Front-Panel Receptacle Connector

Introduction I/0 Connections

P-708 User's Manual 6

Table 6. P-708 Front I/O Connections

Signal Pin Signal Pin
Channel 0 + 1 Channel 0 - 35

Channel 0 Shield * 2 Channel 1 Shield * 36

Channel 1 + 3 Channel 1 - 37

Ground ** 34 Ground ** 68

All other pins are designated as Not Used

* Channel 0 Shield and Channel 1 Shield are tied to their respective transformer secondary
center taps.

** Ground can be used as a conductor shield if desired.

Table 7. RP-708 Front I/O Connections

Signal Pin Signal Pin
Channel 0 + 1 Channel 0 - 35

Chassis * 2 Chassis * 36

Channel 1 + 3 Channel 1 - 37

Reserved 4 Reserved 38

Reserved 5 Reserved 39

Reserved 6 Reserved 40

Reserved 7 Reserved 41

Reserved 8 Reserved 42

Reserved 9 Reserved 43

Reserved 10 Reserved 44

Reserved 11 Reserved 45

Reserved 12 Reserved 46

Reserved 13 Reserved 47

Reserved 14 Reserved 48

Reserved 15 Reserved 49

Reserved 16 Not used 50

Not used 17 Not used 51

Not used 18 Not used 52

Not used 19 Not used 53

Not used 20 Not used 54

Reserved 21 Reserved 55

Reserved 22 Reserved 56

Reserved 23 Reserved 57

Reserved 24 Reserved 58

Reserved 25 Reserved 59

Reserved 26 Reserved 60

Reserved 27 Reserved 61

Reserved 28 Reserved 62

Reserved 29 Reserved 63

Notes:

Introduction I/0 Connections

P-708 User's Manual 7

Signal Pin Signal Pin
Reserved 30 Reserved 64

Reserved 31 Reserved 65

Reserved 32 Reserved 66

Reserved 33 Reserved 67

Ground ** 34 Ground ** 68

* Chassis is tied to the mounting features of the card including the front panel and is
isolated from Ground. Chassis is the preferred shield connection for Channel 0 and
Channel 1 cables. Note that unlike the P-708, the transformer secondary center taps are
left floating.

** Ground can be used as a conductor shield if desired.

Table 8. P-708-C P14 Rear I/O Connections

Signal Pin Signal Pin
Channel 0 + 1 Channel 0 - 2

Channel 0 Shield 3 Channel 1 Shield 4

Channel 1 + 5 Channel 1 - 6

All other pins are designated as Not Used

Table 9. RP-708 P14 Rear I/O Connections

Signal Pin Signal Pin
Channel 0 + 1 Channel 0 - 2

Chassis * 3 Chassis * 4

Channel 1 + 5 Channel 1 - 6

Reserved 7 Reserved 8

Reserved 9 Reserved 10

Reserved 11 Reserved 12

Not used 13 Not used 14

Reserved 15 Reserved 16

Reserved 17 Reserved 18

Reserved 19 Reserved 20

Reserved 21 Reserved 22

Reserved 23 Reserved 24

Reserved 25 Reserved 26

Reserved 27 Reserved 28

Reserved 29 Reserved 30

Reserved 31 Reserved 32

Reserved 33 Reserved 34

Reserved 35 Reserved 36

Reserved 37 Reserved 38

Notes:

Introduction I/0 Connections

P-708 User's Manual 8

Signal Pin Signal Pin
Reserved 39 Reserved 40

Not used 41 Not used 42

Reserved 43 Not used 44

Not used 45 Not used 46

Reserved 47 Reserved 48

Reserved 49 Reserved 50

Reserved 51 Reserved 52

Reserved 53 Reserved 54

Reserved 55 Reserved 56

Not used 57 Not used 58

Reserved 59 Not used 60

Not used 61 Not used 62

Not used 63 Not used 64

* Chassis is tied to the mounting features of the card including the primary and secondary
thermal interfaces and is isolated from Ground. Chassis is the preferred shield connection
for Channel 0 and Channel 1. Note that unlike the P-708, the transformer secondary center
taps are left floating.

Adapter Cable

Figure 5 shows the CONPMC-708 Adapter Cable provided with the P-

708 product, regardless if it is purchased standalone or adapted to a PCIe,

PCI, or cPCI form-factor via the respective PMC Carrier. A RoHS

compliant RCONPMC-708 is supplied with the front I/O version of the

RP-708. Within this document, references to CONPMC-708 also refer to

the RCONPMC-708. The twin-ax adapters are identified as J1 708 CH 1

for the channel referenced as 0 via the API and pin-out tables, and J2 708

CH 2 for the channel referenced as 1.

Note:

Introduction ARINC 708 Bus Coupling

P-708 User's Manual 9

Figure 5. The CONPMC-708 Adapter Cable

ARINC 708 Bus Coupling

The ARINC 708 transmission media, or data bus, is defined as a twisted

shielded pair transmission line consisting of the main bus and a number

of stubs. There is one stub for each terminal connected to the bus. The

CONPMC-708 cable connected to the P-708/RP-708 is designed to

fulfill the requirements as one of these stubs. The main data bus must be

terminated at each end with a resistance equal to the cable’s char-

acteristic impedance (plus or minus two percent). This termination

makes the data bus behave electrically like an infinite transmission line.

Stubs, which are added to the main bus to connect the terminals, provide

local loads and produce impedance mismatch where added. This

mismatch, if not properly controlled, produces electrical reflections and

degrades the performance of the main bus. Therefore, the characteristics

of the main bus and the stubs are specified within the standard. Table 10

summarizes the transmission media characteristics.

Introduction ARINC 708 Bus Coupling

P-708 User's Manual 10

Table 10. Transmission Media Characteristics

Cable Type Twisted Shielded Pair

Capacitance 30.0 pF/ft. max, wire to wire

Characteristic Impedance 70.0 to 85.0 Ohms at 1 MHz

Cable Attenuation 1.5 dB/100 ft. max, at 1MHz

Cable Twists 4 Twists per ft., minimum

Shield Coverage 90% min (Notice 2)

Cable Termination Cable impedance (+/- 2%)

Direct-coupled Stub Length Maximum of 1 foot

Transformer-coupled Stub Length Maximum of 20 feet

There is no maximum length of the main data bus. If you follow

transmission line design practices, and are careful when placing the

stubs, you can achieve working systems with the main bus length of

several hundred meters. It is highly recommended that the bus be

modeled to insure its operation and performance characteristics.

There are two methods for a terminal to be connected to the main bus:

direct-coupled and transformer-coupled.

Transformer-coupled Method

The transformer-coupled method uses an isolation transformer for

connecting the stub cable to the main bus cable. In the transformer-

coupled method, the resistors are typically located with the coupling

transformer in boxes called data bus couplers. The stub length can be up

to a maximum of twenty feet long. Thus, the data bus may be up to

twenty feet away from each terminal.

Direct-coupled Method

In the direct-coupled method, the resistors typically are located within

the terminal. The stub length is limited to a maximum of one foot.

Therefore, for direct-coupled systems, the data bus must be routed in

close proximity to each of the terminals. With the P-708 and RP-708

products, you are limited to the length of the supplied CONPMC-708

cable.

Buses using direct-coupled stubs must be designed to withstand the

impedance mismatches caused by the placement of the stubs. Thus you

should perform a careful tradeoff analysis to determine where stubs are

placed. You should build and test designs using the direct-coupled

method to determine if the waveform distortion causes receiver

problems.

Introduction ARINC 708 PMC Bus Coupling Selection

P-708 User's Manual 11

ARINC 708 PMC Bus Coupling Selection

The ARINC 708 stub on which the CONPMC-708 cable connects can be

defined for either transformer-coupling or direct-coupling. For the RP-

708 and P-708 boards, a shunt set provides selection of the bus coupling

method for each the two channels. On P-708 boards the shunts are

located just behind the front panel connector, while on the RP-708 they

are located behind the front-I/O adapter card connector J1. Four shunts

are provided, J3 for Channel 0+ and J4 for Channel 0-; J5 for Channel 1+

and J6 for Channel 1-. Figure 6 shows the RP-708 mini-shunt and P-708

shunt settings with both channels set for transformer-coupled (center row

of pins shorted to the “XC” row of pins).

Figure 6. RP-708/P-708 Coupling Shunt Selection

A channel can be set for direct-coupled by shorting the center row of

pins to the “DC” row of pins. For the P-708-C conduction cooled and

rugged versions of the P-708 card, coupling selection is provided as a

fixed order option from the factory.

Bus Cables and Connectors

The cables used for an ARINC 708 bus and stub connections are two-

conductor twisted pair wires with twin-axial connectors.

Introduction Bus Terminators

P-708 User's Manual 12

Figure 7. ARINC 708 Bus Cable

On the twin-axial connector, the center pin is the POSITIVE signal (blue

conductor), and the ring is the NEGATIVE signal (white conductor).

The shield is connected to ground.

Bus Terminators

The ARINC 708 bus must be terminated at both ends. Use a 78 Ohm,

2W, 1% resistor for termination. A typical ARINC 708 bus terminator is

shown in the following illustration:

Figure 8. ARINC 708 Bus Terminator

Again, terminators are not optional. A common mistake is to leave off

one or both terminators on the bus.

Bus Couplers and T Connectors

A transformer-coupled bus uses a bus coupler like the one shown in the

following illustration:

Introduction RFI Caps

P-708 User's Manual 13

Figure 9. ARINC 708 Bus Coupler (Transformer-coupled)

The bus coupler shown in Figure 9 is a two-stub coupler. It has two bus

connections on either end and two stub connections on the side. Bus

couplers are available with one to eight (or more) stub connections. Be

careful not to confuse the bus connections with the stub connections – a

common mistake is to connect stubs to bus connections or vice-versa.

A direct-coupled bus uses T connectors rather than bus couplers to

connect stubs to terminals on the bus. A typical T connector is shown in

the following illustration:

Figure 10. ARINC 708 Bus Coupler (Direct-coupled)

Remember that direct-coupled stubs should not be longer than one foot.

Another common mistake is to use long stubs with direct coupling.

RFI Caps

In many situations you can leave unused stub connections open.

However, in some environments it is good to use an RFI cap to limit

radio frequency interference and to keep out dust, dirt, etc. An RFI cap

is a metal cap that closes the shield over the unused stub connection, as

shown in the following illustration:

Introduction External Wrap Connection

P-708 User's Manual 14

Figure 11. RFI Cap

Do not try to use terminators as caps on unused stubs. A terminator on a stub puts a 78
Ohm load on the stub, which is a much lower impedance than a normal RT would add. If
you do not have RFI caps, leave the unused stub connections open.

External Wrap Connection

The following diagram demonstrates how to connect channels 1 and 2 of

an ARINC 708 PMC with front I/O using the CONPMC-708 adapter to a

transformer-coupled bus coupler for an external wrap configuration:

Figure 12. External Wrap Connection

Note:

Introduction Weather Radar and Radar Display Connection

P-708 User's Manual 15

Weather Radar and Radar Display Connection

The following diagram demonstrates how to connect an ARINC 708

PMC to a weather radar or weather radar display unit. In this diagram

the ARINC 708 PMC front I/O connector is wired using the CONPMC-

708 Adapter Cable, with the channel 1 twin-axial adapter connected to

the ARINC 708 bus using transformer coupling (the most frequently

encountered connection).

Figure 13. P-708 WXR Radar or Display Connection

P-708 User's Manual 17

CHAPTER 2

P-708-SW Windows Installation

Software Installation under Windows

Although system resources may limit the number of boards installed on a

system, the P-708-SW distribution supports up to 128 devices when

installed under 32-bit and 64-bit versions of the Windows 10, 8.1, 8, 7,

Vista, XP and Server 2008/2012 operating systems.

Prior to physically installing the ARINC 708 board, the P-708-SW

software distribution should be installed on your PC. Failure to properly

install the software prior to the hardware may result in corruption of the

Windows Device Manager settings and unnecessary complications.

To install the software, follow these steps:

1. Exit all programs.

2. Insert the P-708-SW CD into your CD drive.

3. If the installation does not automatically start after 10 seconds:

• Click Start from the Window Task Bar and select Run.

• Use the Browse button to locate the Setup.exe file in the

Setup\Disk1 folder.

• Double-click the file setup.exe. Then, click OK to launch the

setup program.

4. Follow the on-screen instructions for the installation and properly

select the board type being installed as an RP-708 or P-708/P-708-C.

5. Note which device number is allocated during the installation.

6. Following successful completion of the installation, turn off the

computer.

P-708-SW Windows Installation Hardware Installation

P-708 User's Manual 18

Hardware Installation

Once the software has been successfully installed, follow these steps to

install the hardware and Windows device driver. With the computer

powered off, install the P-708 product into the any available PMC, cPCI,

PCI Express or PCI slot.

Device Driver Installation under Windows

To install the hardware, follow these steps:

1. Power-up the PC.

Windows 10, 8.1, 8, 7 and Server 2008/2012, device installation

occurs automatically; for other Windows versions, the Windows

Plug and Play hardware manager should detect the newly installed

device, and the Found New Hardware dialog box should

automatically startup. Decline any request to query the web to

obtain drivers for this device.

• For Windows XP, select the Install the software automatically

option and click Next. Under the Completing the Found New

Hardware dialog, click Finish.

• For Windows Vista, select the Locate and install driver software

(recommended) option and click Next. Under the Completing

the Found New Hardware dialog, click Finish.

2. If Windows does not detect the new hardware, you must manually

install the device driver:

• Click Start and point to Settings.

• Select the Control Panel.

• Select Add Hardware.

3. If the device drivers are not automatically detected and you are

prompted for a path to the driver location, enter the full path to the

distribution driver folder located beneath

C:\Program Files\Condor Engineering\P-708-SW\Drivers

and click OK.

4. To check for proper driver installation, open the Device Manager as

follows:

• Under Windows 7, Vista, XP and Server 2008, use the “Start ->

Run” command prompt, enter “devmgmt.msc” to open the

Windows Device Manager.

• Under Windows 10, 8.1, 8 and Server 2012, open the “Run”

application and enter “devmgmt.msc” to open the Windows

Device Manager.

P-708-SW Windows Installation Hardware Installation

P-708 User's Manual 19

• Expand the Abaco Systems Avionics Devices folder.

5. Verify the device entry Product Name (P-708 or RP-708) is shown

with no exclamation point overlaying the icon. If this is true, the

device driver was properly installed. You have completed

installation of the hardware.

Installation Verification

To verify the device driver is properly installed, execute the Test

Configuration program.

1. Under Windows 7, Vista, XP and Server 2008

1. Click Start, then Programs.

2. Find and expand the Abaco P-708-SW program group

3. Invoke the P-708 Test Installation shortcut located therein.

2. Under Windows 8, 8.1 and Server 2012

a. Display “Apps by name”.

b. Invoke the P-708 Test Installation shortcut.

3. Under Windows 10 and Server 2016

a. Expand “All apps”.

b. Scroll down and expand the Abaco P-708-SW application

group.

c. Invoke the P-708 Test Installation shortcut beneath.

This program executes an internal wrap test on all available channels and

notifies you of success or failure. If the program reports success on all

channels tested, you are ready to use your new board.

P-708 User's Manual 21

CHAPTER 3

Linux Installation

Overview

The P-708-SW distribution provides support for the ARINC 708

products under most Linux Kernel 2.4, 2.6, 3.x and 4.x revisions. The

install process builds the API as a shared library and installs the driver as

a module. Application programs must link with the shared library to

access the respective device. Up to eight boards can be installed under

supported Linux distributions. Refer to the files Linux_support.txt and

Linux_install.txt located in the Linux distribution file archive for the

latest information on installing and building the common driver along

with the ARINC 708 API and example program.

Software Installation

The Linux installation process requires your ARINC 708 hardware be

installed prior to execution of the installation:

1. Log on as "root" (you may use "su")

2. Copy the Linux distribution compressed tar file

(linux_p708_vnnn.tgz) to the /root directory.

3. Uncompress and extract the installation file using the following:

 tar -zxvf linux_p708_vnnn.tgz

After the tarball extraction completes, the following directory structure is

created:

Linux Installation Building the Distribution

P-708 User's Manual 22

Figure 14. Linux Installation Directory Structure

Building the Distribution

Automatic installation (Builds LSP, API, and example)

Navigate to the Install directory and run the installation script by typing

 ./install

The PCI device driver builds and loads if the installation script detects a

Abaco Systems avionics PCI board in the "procfs" file system. If the

system does not have a "proc" file system, perform a manual install of

the device driver.

These are the configuration arguments that are accepted by the "install"

script:

1. To remove support for SYSFS (the SYS file system), include

"no_sysfs" in the "./install" command line. If the system does not

have the SYS file system or is based on kernel 2.6.10 and later

versions and does not agree with the "Proprietary/GPL" license,

SYSFS support must be removed.

2. To debug the kernel device driver(s), include the option

"debug_drv=<DEBUG LEVEL>" in the "./install" command line.

The debug statements are printed out to the kernel message log. The

<DEBUG LEVEL> provides increasing debug information with a

range of "0" (none) to "3" (all).

3. To debug the low level library, include "debug_ll" in the "./install"

command line. The debug statements are printed to stdout.

4. To build only the device drivers and libraries, include "no_install" in

the "./install" command line. If support for SYSFS has been

removed, the "ceidev.conf" does not generate. You need to follow

the instructions appearing on the screen during the installation.

Linux Installation Linux Driver Operation

P-708 User's Manual 23

Refer to Linux_install.txt in your distribution; sub-section 4 in the

section "Manual Install" concerning the "ceidev.conf" file.

5. To build the low-level and API libraries as 32-bit libraries to run in

32-bit emulation mode for 64-bit systems, include "32bit" in the

"./install" command line.

The installation is finished. Check the "install" script output and the

kernel message log for any errors. If there are no errors, the device

driver(s) are loaded into the kernel, the low-level library is built as well

as all detected API(s) distributions.

The installation installs the driver, builds and installs the API, (including

the Linux common low-level interface), and compiles the example

program. To test the installation, navigate to the Examples directory and

run tst_cnfg.

Manual Installation

Refer to the file Linux_install.txt in your distribution, section "Manual

Install" concerning the manual installation of the Linux distribution

and/or driver.

Linux Driver Operation

Linux compiles drivers as modules that dynamically link with the Linux

kernel. The installation script automatically compiles the correct driver

for the boards you are installing and the Linux kernel version. You can

recompile using one of the Make files in the /Drivers/kernel/pci

directory, where kernel is either 2.4, 2.6 or 3.0. The module installation

script load_pci is supplied in the Driver folder, which loads the module.

You can manually load the driver by typing ”./load_pci”.

Installation automatically calls these scripts. However, if you reboot the

system, you need to re-run this script. You can put the script in the

rc.local initialization file. The script automatically runs on power-up.

The installation instructions located in the distribution file

Linux_Install.txt explain how you manually run the script.

Troubleshooting

When installing any API distribution, you need to be logged in as "root".

Use the "su" command to gain "root" permissions. Root permissions are

necessary when building device drivers and loading the modules into the

kernel.

Linux Installation Troubleshooting

P-708 User's Manual 24

Useful Linux system utilities

dmesg: displays the kernel message log.

lsmod: displays the current modules loaded in the kernel.

lspci displays the PCI config space for all PCI devices

strace: displays the system calls that the driver or application calls.

gdb: the GNU debugger.

modinfo: displays the module information for a driver.

Compilation Errors

If there are compilation errors, check that the path to the kernel headers

is valid. If different than the default ("/lib/modules/<KERNEL>/build"),

include the path in the applicable driver's makefile by including a "-I"

with the path. If there are system calls that cannot be resolved, check the

"/proc/kallsyms" file to verify that they are compiled into the kernel.

Run-time Errors

Run-time error resolution may involve one or more of the following:

1. Check that the device driver, uceipci, is loaded with "lsmod".

2. Examine the kernel message log for error output from the device

driver uceipci. Use "dmesg" and/or look directed at the kernel

message log located in "/var/log/messages".

3. If there are version errors when loading the driver, the driver's

version string (magic) may not coincide with current running

kernel. Use "modinfo" to get the driver's magic number. Refer to

the "/usr/src/linux/makefile" and "/usr/src/linux/.config".

4. To determine where an error may be occurring in the application or

API libraries use "gdb". Make sure when compiling to provide the "-

g" to GCC.

5. If a device driver fails to unload with "modprobe", use "rmmod".

If you are loading the 2.6 or 3.x PCI device driver and you receive

errors indicating missing symbols with "sysfs" in the symbol name,

build the distribution without support for SYSFS.

P-708 User's Manual 25

CHAPTER 4

VxWorks Installation

Overview

VxWorks is an embedded real-time operating system supporting flexible

hardware configurations. The ARINC 708 API compiles and runs under

most Motorola PowerPC and Intel x86 VxWorks Board Support

Packages.

The ARINC 708 API can control up to eight boards on a single VxWorks

host, using device numbers 0-7 to designate the device. VxWorks

assigns the device numbers based on the order it encounters the devices

on the bus. The first device is device 0, the next device is 1, and so on.

If you have only a single board in your system, it is always device 0.

Use this value when programming using the supplied API.

To use the ARINC 708 API with VxWorks you must first build a

VxWorks image supporting the respective ARINC 708 PMC

configuration. Upon boot of this image, you may download and execute

the client application. These basic steps are described in subsequent

sections of this chapter.

Building a VxWorks Image

The procedure provided below for including the ARINC 708 API and

common avionics driver in your VxWorks image utilizes the Component

Installation method, and applies to both Tornado and Workbench

development environments. Since these methods differ greatly, these

instructions are written in a generic fashion and must be interpreted for

your environment.

In addition to these general instructions are specific dependencies on the

use of the VxBus Gen1 and Gen2 device drivers with your target

processor and BSP, also described below.

VxWorks Installation Building a VxWorks Image

P-708 User's Manual 26

VxBus Gen 1 Driver Support (VxWorks 6.8 and 6.9)

1. To install the generic Abaco Avionics common VxBus driver

support, copy the file 40avioVxwDrv.cdf from the Component

Installation File folder beneath:

/Program Files/Condor Engineering/P-708-SW/Source/VxWorks/VxBus Gen1 Driver

To

 [Workbench_directory_path]\target\config\comps\vxWorks

2. Copy the following source and header files from the folder

/Program Files/Condor Engineering/P-708-SW/Source/VxWorks/VxBus Gen1 Driver

To either folder

[Workbench_directory_path]\target\config\<BSP Folder> or

[Workbench_directory_path]\target\config\comps\src:

avioVxwDrv.c

avioVxwDrv.h

Continue with Common Build Components below to build the ARINC

708 API. A sample Abaco Avionics common PPC VxBus Gen 1 Kernel

Configuration file setup is shown below.

VxBus Gen 2 Driver Support (VxWorks 7)

1. To install the generic Abaco Avionics common VxBus Gen2 driver

support for VxWorks 7, copy the entire folder abaco_avio (not just

the contents) from:

 /Program Files/Condor Engineering/P-708-SW/Source/VxWorks/VxBus Gen2 Driver

VxWorks Installation Building a VxWorks Image

P-708 User's Manual 27

To

 [Workbench_directory_path]/VxWorks-7/pkgs

2. If you plan to create a new VxWorks 7 Source Build Project, once

installed the driver should be included in the build automatically;

however, if you are adding the Abaco Avionics driver to an existing

VxWorks 7 Source Build Project, you must perform the following

steps:

a. Double-click on your VSB Source Build Configuration entry to

refresh the project.

b. Expand the Build Targets selection

c. Expand the Layers selection

d. Right-click on the AVIO_1_0_0_2 layer and select Build Layer

e. The Abaco Systems VxBus Driver for Avionics Boards should

now be available for selection within any VxWorks 7 Image

Project based on this VSB.

3. A sample Abaco Avionics common VxWorks 7 x86 VxBus Gen2

Kernel Component Description File setup is shown below:

4. Right-click on the Abaco Systems VxBus Driver for Avionics Boards

entry and select Include.

5. Continue to Common Build Components to build the kernel image

with the VxBus Gen2 device driver.

6. If you prefer to build an RPM installer for this driver, the spec file

abaco_driver.spec is provided in the /VxWorks Driver/VxBus Gen2

Driver distribution folder.

VxWorks Installation Building a VxWorks Image

P-708 User's Manual 28

Legacy PCI Driver Support

1. To build the generic legacy (non-VxBus) Abaco Avionics common

VxWorks PCI driver, copy the appropriate component installation

file as specified in the following table:

Kernel Version Platform Component Installation File

VxWorks
5.5

x86 51_GEIP_x86_55_PCI.cdf

PPC 51_GEIP_PPC_55_PCI.cdf

VxWorks
6.0 - 6.5

x86 51_GEIP_x86_RTP_6x_PCI.cdf

PPC 51_GEIP_PPC_RTP_6x_PCI.cdf

VxWorks 6.6 - 6.9
x86 51_GEIP_x86_RTP_66_PCI.cdf

PPC 51_GEIP_PPC_RTP_6x_PCI.cdf

from the respective processor-specific folder in the VxWorks Legacy

PCI Driver/Component Installation File folder located beneath:

/Program Files/Condor Engineering/P-708-SW/Source/VxWorks

To

[Workbench_directory_path]/target/config/comps/vxWorks

2. Copy the following source files from the folder

\Program Files\Condor Engineering\P-708-SW\Source\VxWorks

And the file cei_types.h from the distribution Include folder, to either

folder

[Workbench_directory_path]\target\config\<BSP Folder> or

[Workbench_directory_path]\target\config\comps\src

CondorVxWRTPDrv.c

CondorVxWRTPDrv.h

gefes_ioctl.h

lowlevel.h

target_defines.h

Common Build Components

1. You may choose to include the ARINC 708 API source files in the

BSP kernel source folder, or create a new project folder for the

ARINC 708 API and application development. In either case, copy

the following source files from the folder \Program Files\Condor

Engineering\P-708-SW\Source and VxWorks folder beneath, to the

folder of your choice:

p708_api.c p708_vxw.c

VxWorks Installation Using the Sample Program

P-708 User's Manual 29

2. If you choose not to reference the Include folder in your compilation

Include Path, copy the following C header files from the folder

\Program Files\Condor Engineering\P-708-SW\Include and driver

source folder to that same folder, with some files dependent on the

driver method used:

ar_error.h cei_types.h

fpga_708.h fpga_rp708.h

p708_api.h p708_glb.h

p708_hw.h avioVxwDrv.h

3. Open the workspace containing your VxWorks target image project

and access the Kernel Configuration setup for the VxWorks image.

4. Beneath the hardware component, right-click the “Abaco Systems

VxBus Driver for Avionics Boards” (or “Abaco Systems PCI Avionics

Products”), and select Include (quick include).

5. Modify the default values for any definitions as required for your

target system. Examples of such modifications include:

• For VxBus x86/Pentium kernel images, change the default state

of “Enable big endian to little endian conversion” to FALSE.

• For Legacy PCIbus x86/Pentium kernel images, change the

default state of “Define PCI Compile for PowerPC” to FALSE.

6. If you choose to build the API outside of the BSP source folder, you

may have to manually define the directive VXW_PCI_PPC as TRUE

for a PowerPC target C source compilation/build or FALSE for an

x86/Pentium target C source compilation/build, (normally defined in

the configuration definition file).

7. Once you have your VxWorks kernel image built and installed on

your target, open a shell to the target and invoke the function

avioDeviceShow. This routine lists all supported Abaco Avionics

products in the device ID order that should be referenced from your

application for the respective boards.

See the section, “Target-specific Compiler Directives” for more

information on the various ways to customize the P-708 API source code

compilation for your target BSP.

Using the Sample Program

The API distribution includes an example program named

TST_CNFG.C. The source code is located within the Windows

distribution Source folder or on the distribution disk in the P-708-

SW\Source directory. You can use this program to test your VxWorks

installation, as it simply executes an internal wrap configured as a

receiver-transmitter channel pair. You can also use TST_CNFG.C as a

guide for programming with the ARINC 708 API.

VxWorks Installation Building the API and Sample Program with Workbench

P-708 User's Manual 30

Building the API and Sample Program with Workbench

While the driver portion of the distribution must be built into the kernel

image, the API and sample program can be built as downloadable

objects. The following steps explain how to build the API and sample

program together with Workbench for a PowerPC target supporting the

VxBus driver, but can be easily adapted to Tornado, as well as other

build environments.

1. From the File pulldown, select New->Wind River Workbench

Project… to initiate a new project for your downloadable

application. Specify your target operating system, then select Next.

2. For initial testing of the board installation, select the build type

“Downloadable Kernel Module”. Click Next.

VxWorks Installation Building the API and Sample Program with Workbench

P-708 User's Manual 31

3. Enter your project name. “PPC_P708” was used for this example.

Click Finish.

4. Right-click the new project and select Properties.

5. Click on Build Properties and select the Paths tab.

6. Add paths to the P-708 distribution’s Include and VxBus Driver

folders, then click on Apply.

VxWorks Installation Building the API and Sample Program with Workbench

P-708 User's Manual 32

7. Click on the Defines tab, and add defines for VXW_PCI_PPC and

VXW_VXB_DRIVER. Click on Apply, then OK.

VxWorks Installation Building the API and Sample Program with Workbench

P-708 User's Manual 33

8. Open a view of the P-708-SW/Source folder the Windows Explorer.

Drag the files P708_API.C, P708_VXW.C and TST_CNFG.C to the

top level project, so they are included as follows:

9. Right-click the build specification and select Build Project.

10. Assuming you have already connected to the target via target server,

right-click on the project and select Download->VxWorks Kernel

Task to download the output file you created.

11. Open a host shell to the target, then invoke the application by typing

wrap708 at the shell prompt.

This program executes a basic internal wrap test on the P-708/RP-

708 board and notifies you of success or failure. If the program

reports success, you are ready to use your new board.

Target-specific Compiler Directives

The P-708 API accounts for specific target requirements using

compilation directives. There are a few directives that may be required

for the board-specific VxWorks support provided with your target. Two

alternatives to the standard taskDelay method to pause execution are

provided for select board support packages, sysUsDelay and sysMsDelay.

In addition to VxBus support, there are also differing methods for

Legacy PCIbus driver mapping to a P-708 board’s PCI memory regions,

sysMmuMapAdd, sysPciMemToLocalAdrs and sysBusToLocalAdrs. You

should determine the specific requirements for your target BSP and take

the appropriate action prior to building the P-708 API into your system.

The following compiler directives are defined to include both general

and specific features required for compiling for various VxWorks target

BSPs:

VxWorks Installation Building the API and Sample Program with Workbench

P-708 User's Manual 34

Parameter Description Target Options

Common Avionics API and Driver Specific Parameters and Directives

VXW_VXB_DRIVER
When this directive is defined in the kernel image build
project, it designates the use of the VxWorks VxBus device
driver in place of the legacy PCI driver.

Both VxBus drivers
for VxWorks 6.x and
VxWorks 7

N/A

VXW_PCI_PPC
When this directive is present or defined, it designates the
target processor architecture as either PowerPC or x86. All Kernel Versions

TRUE (PPC)
FALSE (x86)

VXW_PCI_X86
Used to enable x86 target processor specific interrupt
processing.

Legacy PCI driver for
VxWorks 5.5 and 6.x

TRUE (x86)
FALSE (N/A)

AVIO_DEBUG
Used to enable console printout of debug information
during driver initialization.

VxBus Gen1 driver
for VxWorks 6.7
through 6.9

TRUE
FALSE (default)

vxwdebug
Used to enable console printout of debug information
during driver initialization.

Legacy PCI driver for
VxWorks 5.5 and 6.x

TRUE
FALSE (default)

VXW_X86_MAP_ADD

Adds the board’s PCI memory to
sysPhysMemDesc via invocation of
sysMmuMapAdd. Optional for an x86 target
processor

Legacy PCI driver for
VxWorks 5.5 and 6.0
to 6.5

TRUE
FALSE (default)

P-DIS Specific Parameters and Directives

NON_INTEL_WORD_ORDER
This directive is intended for use when building for a Big
Endian mapped target (typical for PowerPC and usually
handled via target_defines.h).

All Kernel Versions N/A

DELAY_USE_SYS_US_DELAY
This directive is intended for use when a delay should be
implemented with sysUsDelay instead of taskDelay (applies
to some Thales VMPC* targets).

VxWorks 5.5 N/A

DELAY_USE_SYS_MS_DELAY
This directive is intended for use when a delay should be
implemented with sysMsDelay instead of taskDelay
(applies to some Motorola MCP* targets).

VxWorks 5.5 N/A

P-708 User's Manual 35

CHAPTER 5

Integrity® Support

Introduction

Green Hills Integrity® is a secure high reliability real-time operating

system (RTOS) intended for use in mission critical embedded systems.

The ARINC 708 API supports the Integrity operating system on

PowerPC and Intel processors, using the standard P-708 API C source

files in conjunction with the supplied Integrity-specific driver interface

and additional kernel C source file set.

Integrity is flexible in how it builds the kernel and application software.

You can build a monolith containing the kernel, BSP, and application

software, or you can build a separate kernel/BSP and the application as a

Dynamic Download. The P-708-SW Integrity distribution supports

either method. The distribution provides the Integrity PCI driver, API

source code, API static library, and example program source. Link the

static library with your application to obtain ARINC 708 API support.

The source code allows you to modify the static library if needed.

Integrity Installation

There are two options for installing P-708-SW support for Integrity. If

you are running the Multi IDE on a Windows system, you can install

using the Windows installation and copy the source files from the P-708-

SW distribution \Source and \Include folders. You may also copy these

folders directly from the Installation CD-ROM. The installation contains

the Abaco Systems Avionics Integrity PCI driver, along with the source

code for the API, driver interface, and example program.

After acquiring the P-708-SW distribution source files, you need to copy

the PCI device driver source into the Integrity BSP project for your target

system and rebuild the kernel. The Abaco Systems Avionics Integrity

driver works with most PowerPC and Intel BSPs. You can then build

your own static library and example application projects.

Integrity® Support Integrity Installation

P-708 User's Manual 36

Integrity PCI Driver Installation

You must install the PCI device driver as part of the BSP project in the

default.gpj. The driver is a C file named cei_int_pci_drv.c that is BSP

independent. Add that file into the libbsp.gpj project. The figure below

shows the driver file installed in a Dy4 DMV181 project. To add the

file, right-click the libbsp.gpj line and select the Add File Into

libbsp.gpj option.

Figure 15. Integrity PCI Driver Installation

Building the ARINC 708 API with Multi

The P-708-SW Integrity Distribution contains all of the source files

necessary to build a static library for a generic PowerPC target, which

should suffice for most PowerPC systems. Build a static library with the

supplied source and include files as shown below:

p708_api.c

p708_int.c

mem_integrity.c

The following list shows the include files (.h) required to build the API.

ar_error.h p708_api.h

p708_glb.h p708_hw.h

fpga_708.h fpga_rp708.h

cei_types.h lowlevel.h

target_defines.h

Integrity® Support Integrity Installation

P-708 User's Manual 37

Compiler Directives

The following compiler directives should be used when building the P-

708 API for your target:

◼ INTEGRITY_POSIX should be defined for any INTEGRITY

project using POSIX support, which can be any build other than for

an Integrity 178B host.

◼ INTEGRITY_PCI_PPC selects the INTEGRITY target

compilation for a PowerPC host in the API source files.

◼ INTEGRITY_PCI_X86 selects the INTEGRITY target compilation

for an Intel host in the API source files.

Monolith Image versus Dynamic Download

During development, if building your application and P-708 API

library as a separate virtual AddressSpace project to be deployed

via Dynamic Download, no further directives are required. The

Integrity dynamic loader will determine the virtual addresses of your

P-708 board memory regions at load time and pass those addresses to

the API during the open session resource acquisition process.

If you are building your application and/or P-708 API library with

the kernel as a single image via Monolith Integrity Application

Project, the symbol GHS_KERNEL must be defined for the

compilation of the file mem_integrity.c.

The compiler define for NON_INTEL_WORD_ORDER is now

provided via the file TARGET_DEFINES.H.

P-708 API Project Setup

Select a stand-alone project for your host architecture (generic PowerPC

or Intel) and select a processor option matching your system.

For Project Type, select Library (empty). You can then add the C source

files to the project and add the path to the include files.

Figure 16. Example P-708 Integrity Library Project Setup

Integrity® Support Integrity Installation

P-708 User's Manual 38

If you are building a library to run in a Monolith, you also need to define

the symbol GHS_KERNEL under Define Preprocessor Symbol. You

can name the output library to anything and use that library name to link

with your application(s).

Figure 17. Example P-708 Integrity Library Project Options

Building Integrity Applications

This procedure for building your application assumes you have built a

static API library for dynamic download as described previously. The

figure below shows a typical Dynamic Download project using your

ARINC 708 API library.

Figure 18. Example P-708 Integrity Application Project Setup

Build the application using the following steps:

Integrity® Support Integrity Installation

P-708 User's Manual 39

12. Define the host processor-specific preprocessor symbol

INTERGITY_PCI_PPC or INTERGITY_PCI_X86.

13. Link with the P-708 static library, and include libposix.a and

libsocket.a. You should review the Integrity POSIX chapter to make

sure this POSIX option meets your application’s needs.

Figure 19. Example P-708 Integrity Application Project Options

Add sufficient MemoryPoolSize to create POSIX threads. The

example below uses 0x1000000, but your application may need

more. Add the MemoryPoolSize entry between the Filename and

Language entries in the Integrate file options.

Figure 20. Adding a MemoryPoolSize Entry

14. Build the project, then download and run your application. If you

desire the application to execute upon download, modify the value

for the DefaultStartIt attribute to be “true” as follows:

Integrity® Support Integrity Installation

P-708 User's Manual 40

Figure 21. Modifying the Value for the DefaultStartIt Attribute

P-708 User's Manual 41

CHAPTER 6

LabVIEW Support

Introduction

The P-708-SW distribution provides a combination of the components of

the ARINC 708 Application Programming Interface (API) with a set of

LabVIEWTM Virtual Instruments (VIs) designed for use with either

LabVIEW under most Windows operating systems or a National

Instruments PXI/ETS LabVIEW Real-Time target. A basic application-

level VI demonstrates how to incorporate P-708 product and API

features into your ARINC 708 LabVIEW Real-Time applications.

Understanding the components of the P-708 LabVIEW support is an

important first step in getting started with this product. Included in the

P-708-SW distribution for the ARINC 708 PMC products are the

following components, all located in folders beneath the \P-708-SW\LV

folder:

◼ On-line VI Documentation

◼ Driver Files

◼ Example VI and Project

◼ The Functional VI Set

◼ LabWindows/CVI Real-Time Target Dynamic Link Library

Example VI and Project

An example VI and corresponding project named P708_Wrap_Example

are provided and can be used with either LabVIEW or LabVIEW Real-

Time. This example demonstrates how to setup a ARINC 708 PMC

channel to continuously transmit a 720 frame sweep consisting of 3 color

bands, and retrieve received frame data internally wrapped to the receive

channel.

LabVIEW Support Functional VI Set

P-708 User's Manual 42

Functional VI Set

The set of VIs provided with the P-708-SW distribution support a

slightly limited set of functionality for the P-708 channel configuration

and buffer usage. With the exception of simplified buffer and channel

configuration VIs, the VI set contains one-to-one equivalent VI to

ARINC 708 API routines that interface to the ARINC 708 PMC devices.

This VI set provides the fundamental VIs necessary for using most of the

hardware features available with the ARINC 708 PMC product line. A

help index of VI descriptions is included with access to the

documentation for each VI, available in the \LV\Documentation folder

and accessed via the P-708 LabVIEW VI Help Index shortcut.

LabVIEW Real-Time

Support for LabVIEW Real-Time is included with the P-708 LabVIEW

distribution as described in the following paragraphs.

Installation in a LabVIEW Real-Time PXI/ETS System

A VISA driver INF file is included in the \LV\Driver folder, called P-

708.INF. This file must be copied to the directory C:\ni-rt\system on

your target controller using any FTP utility prior to installation of an

ARINC 708 PMC board. Once this file and the ARINC 708 PMC board

are installed and the target controller is running, the board should be

present in the MAX device list for this target.

If you are using LabVIEW 2010 or later, a driver installation application

VI called P708_Install_Driver.vi is provided in the same folder as the

driver INF file. If you execute this VI and provide the IP Address for

your Real-Time Target system, it will install the P-708.inf file on your

target system’s C:\ni-rt\system directory.

P-708 LabVIEW Real-Time API Library

A LabVIEW Real-Time only Dynamic Link Library (P708_API.DLL) is

included in the \LV\Examples\Real-Time Project folder, built using

LabWindows/CVI specifically for use when an example project is

modified to be executed on a Real-Time PXI/ETS target. This DLL

should only be used for LabVIEW Real-Time applications and will fail if

referenced by any VI under any Windows operating system.

LabVIEW Support LabVIEW Real-Time

P-708 User's Manual 43

P-708 LabVIEW Projects

The LabVIEW project P708_Wrap_Example can be modified to run on a

LabVIEW Real-Time PXI/ETS system by invoking the Add Targets and

Devices dialog and adding a new Real-Time target to the project. This

project will support execution on any Real-Time target system having a

P-708 installed.

The LabVIEW project Detect_Target_Devices is designed to execute

exclusively on a LabVIEW Real-Time PXI/ETS system. It queries the

target system for all supported Abaco Systems Avionics boards and

displays those found based on the board type.

P-708 Device Indexing

The Device Index In control used in the P-708 LabVIEW example

application VI and any custom LabVIEW application referencing P-708

boards only applies to P-708 boards installed in the PXI/ETS system.

The first P-708 board installed should be referenced as Device 0, and

increment for each additional P-708 board installed.

This device number reference scheme differs from executing a

LabVIEW application under Windows, where each Abaco Systems

Avionics board installed is referenced by a specific Device Index value.

Troubleshooting

There are several issues that may arise when using the P-708 LabVIEW

support with a LabVIEW Real-Time target. The following paragraphs

describe some potential problems and their resolutions.

◼ PROBLEM: When deploying a LabVIEW Real-Time project or

executing a LabVIEW Real-Time application executable upon target

startup, an error indicating a “VI failed to load a DLL on RT target

device” is encountered.

CAUSE: The ARINC 708 API library file P708_API.DLL and/or

National Instruments CVI Run-Time Engine library file

CVI_LVRT.DLL are not installed on the target.

RESOLUTION: If the file P708_API.DLL from the Projects folder

is not included in your project, (see your project Application

Properties, Source Files option), you can FTP the file

P708_API.DLL to the \ni-rt\SYSTEM folder on the target system.

FTP the version of CVI_LVRT.DLL installed by your LabVIEW

distribution (usually located in the \Windows\System32 folder on

your host system), to the \ni-rt\SYSTEM folder on the target system.

LabVIEW Support LabVIEW Real-Time

P-708 User's Manual 44

◼ PROBLEM: When executing any of the example or custom

authored LabVIEW applications, a dialog box indicating a failure to

download a VI appears, followed by the RT Target Errors dialog box

appearing with the following entry in the Error List:

LabVIEW: Failed to load shared library p708_api.dll on RT

target device.

CAUSE: The Windows version of P708_API.DLL resides in the

folder in which the execution a LabVIEW R/T application has been

attempted or is referenced in the LabVIEW Real-Time application

project.

RESOLUTION: First, close LabVIEW, then overwrite the version

of P708_API.DLL in the current folder or change the project library

reference to the LabWindows/CVI generated version of

P708_API.DLL residing the projects folder.

◼ PROBLEM: Execution of any application VI results in an

Application Error Status of “Device Alloc Failure”, but no RT Target

Error dialog box appears.

CAUSE: The P708.INF file for your board may not be properly

installed the PXI/ETS target controller.

RESOLUTION: Assure your board is present under the device list

for your Remote System, as shown via the Measurement and

Automation Explorer (MAX). If it does not appear, check to see the

P708.INF file has been installed in the correct folder on your target.

◼ PROBLEM: When executing any of the example or custom

authored LabVIEW applications from the host, a dialog box appears

as follows:

LabVIEW: LabVIEW.exe – Unable To Locate DLL. The

dynamic link library cvi_lvrt.dll could not be found in the

specified path, (C:\<path>).

CAUSE: LabVIEW did not detect installation of the CVI Run-Time

Engine library file cvi_lvrt.dll.

RESOLUTION: If you are using LabVIEW Real-Time, assure the

required DLL “cvi_lvrt.dll” resides in the Windows System (\system

or \system32) directory on your host computer.

P-708 User's Manual 45

CHAPTER 7

ARINC 708 PMC Product Features

Overview

The ARINC 708 products provide two channels, each of which operates

as an independent transmitter or receiver with a programmable frame

size and buffer storage capacity. They provide specialized receive

features such as frame time-tagging and bit count error detection as well

as specialized transmit features such as sweep scheduling, programmable

frame gap duration, and frame bit count/sync pulse error injection. The

following paragraphs document several of these features, and how they

might be used in your ARINC 708 application.

ARINC 708 Protocol Support

The electrical transmission of ARINC 708 data over the bus is performed

with start and stop sync pulse widths per the ARINC 708 / 453

specifications. The number of bits transmitted between the start and stop

sync pulses is programmable by the host.

The API routine P708_SET_CHANNEL_CONFIG provides the method

to set transmit and receive channel options for the ARINC 708 products.

Receive Frame Time-tagging

The ARINC 708 products support received frame time-tagging based on

an individual internal 48-bit one-microsecond timer allocated to each

channel. Each channel’s timer is reset to zero and begins counting upon

transition to the run mode. The host does not have control of, or access

to, the timer source used as the receive frame time-tag reference.

ARINC 708 PMC Product Features Receive Frame Storage

P-708 User's Manual 46

The time-tag for each frame is stored in the Ancillary Buffer region

allocated to the respective channel, based on detection of the frame start

sync pulse. The 48-bit time-tag value is stored in three consecutive 16-

bit locations, starting with the ancillary buffer offset specified in the

respective channel’s Ancillary Buffer Start register. Time-tag storage

wraps around to the start of the Ancillary Buffer region once the end of

the buffer is reached, as specified in the respective channel’s Ancillary

Buffer Stop register.

Receive Frame Storage

The ARINC 708 products store received frame data in the 16-bit wide

Frame Data Buffer region allocated to the respective channel. Within the

boundaries of that region, all 16 bits of each word are used for

continuous frame data storage, (there are no unused bits). For frame

sizes not divisible by a 16-bit word boundary, the frame storage ends and

subsequent frame storage begins on a bit boundary within the respective

memory location. Frame storage is based on the values specified in the

respective channel’s Frame Size register.

The starting location at which received frames are stored is specified in

the respective channel’s Data Buffer Start register. Frame data storage

wraps around to the start of the Data Buffer region once the end of the

buffer is reached, as specified in the respective channel’s Data Buffer

Stop register.

The number of frames actively stored in the assigned Frame Data Buffer

region is indicated in the Frame Count register. This value represents the

total number of frames received since this channel was last enabled.

Since frame data storage is based on a variable bit size, the action of

moving the end of a frame’s data from the serial receive logic to the

Frame Data Buffer is dependent on a full serial receive shift register. For

this reason, the end of the last received frame’s data will not be available

from the buffer unless the receive channel is disabled through the

Control Register Channel Enable bit. The remaining data in the serial

receive shift register aligns and writes to the Frame Data Buffer.

Transmit Frame Storage and Transmission

The ARINC 708 products transmit frame data allocated in individual

frames or grouped into single or multiple sweeps. Frame data is stored

continuously in the respective channel’s Data Buffer, with no unused bits

inserted between the end of one frame and the beginning of the next. For

frame sizes not divisible by a 16-bit word boundary, the frame data

storage ends and subsequent frame data storage begins on a bit boundary

within the respective memory location.

ARINC 708 PMC Product Features Periodic Sweep Transmission

P-708 User's Manual 47

The transmit logic of the ARINC 708 products inserts a frame gap

between the stop pulse of one frame and the start pulse of a subsequent

frame in terms of the duration between frame start pulses, referred to as

the frame interval. The frame interval, specified in microseconds,

should be defined to include the duration to transmit the total number of

bits for the frame, plus six bit-times for the sync pulses, and finally the

number of microseconds of gap time to insert between the frames.

The calculation for frame interval is based on the standard ARINC 708

1MHz bus speed. For a standard 1600-bit frame (with 6 bits for the start

and stop pulse duration), the duration required to transmit that frame is

calculated as follows:

Transmit Duration = 1 x (1600 + 6)
 1,000,000

The frame interval can then be determined by the sum of the transmit

duration (0.001606 seconds) and the desired frame gap. Using a frame

gap of 1.6 milliseconds, the frame interval programmed for this standard

frame size would be:

Frame Interval = 0.001606 + 0.0016 = 3206 microseconds

An ARINC 708 sweep is considered a logical grouping of a predefined

number of frames that fill a WXR display. A sweep can be programmed

to a fixed number of frames for each individual channel, with the sweep

size specified in terms of frames in the Transmit Sweep Size register.

The delay duration inserted between consecutive sweep transmissions is

specified in microseconds through the Transmit Sweep Interval register;

however, the minimum Sweep Interval between the Stop Pulse of the last

frame in a sweep and the Start Pulse in the first frame of the next sweep

is limited to the frame gap duration defined via the Frame Interval

register.

Periodic Sweep Transmission

The Sweep Transmission feature supports periodic sweep transmission of

all, or a portion of, a defined transmit Frame Data Buffer. The number

of sweeps included in the repeated sweep transmission is specified

through the Transmit Sweep Count register. The periodic transmission

of the specified number of sweeps is enabled via the Control Register’s

Repeat bit.

Error Injection

The ARINC 708 products support transmit frame error injection on a

frame-by-frame basis using the Ancillary Buffer assigned to the

respective channel. Error injection includes transmission of an additional

ARINC 708 PMC Product Features RP-708 Enhancements

P-708 User's Manual 48

bit above the specified frame size, a missing bit below the specified

frame size, or inverted start and/or stop sync pulses. For a channel set in

the transmit mode, each 16-bit location of the Ancillary Buffer allocated

to the respective channel is assigned to the respective frame defined in

the Frame Data Buffer allocated to that channel. Within each location, 4

bits are used to induce errors listed above in the transmission of the

frame data, defined as follows:

15-4 3 2 1 0

Unused

Stop Sync
Inversion

When set the
Stop Sync Pulse
will be inverted

Start Sync
Inversion

When set the
Start Sync Pulse
will be inverted

Short Frame Error

When set one bit
will be removed

from the end of the
frame

Long Frame
Error

When set one bit
will be added to
the end of the

frame

RP-708 Enhancements

The RoHS compliant RP-708 is a replacement for the P-708 and contains

a few additional features not available on the P-708.

The revision of the firmware has been added to the RP-708 at byte offset

0x2C.

The RP-708 includes a temperature sensor to report PCB temperatures if

desired. The sensor is accessed via registers at byte offset 0x30 and 0x34.

A security device is present on the RP-708 (as well as many Abaco

Systems Avionics products) which involves no interaction on the part of

the user. Bit 10 of Channel 0 and Channel 1 Control Registers (byte

offsets 0x0 and 0x100 respectively) provides status of communication

with this security device. When this bit is set, transmission and reception

of ARINC 708 data is disabled. This bit should never be set. Contact

Abaco Systems Avionics technical support if you are experiencing

problems with the security device.

P-708 User's Manual 49

CHAPTER 8

P-708-SW Distribution and API

Overview

The Abaco Systems P-708-SW Distribution supplies an extensive

software Application Programming Interface (API) for the supported

ARINC 708 PMC products. API routines are supplied to setup the

interface, configure channel attributes, and transmit and receive data for

the most common 32-bit programming environments (Windows

7/Vista/XP, Linux, VxWorks and Integrity), and select 64-bit

environments (Windows 7/Vista/XP and Linux).

API Source Files

This library of utility routines provides the ability to write your own

programs to interface with the ARINC 708 product. They are written in

C and delivered in a generic C compiler-compatible format. They can be

called from other languages by adhering to the procedures defined in the

applicable documentation. The API consists of the following C source

files:

P708_API.C

This file contains the bulk of the API functionality. All of the utility

routines that interact with the ARINC 708 hardware device reside within

this file.

P708_API.H

Included in the file P708_API.C, this header file contains the majority of

the ARINC 708 API constants, data types, and function prototypes for

P-708-SW Distribution and API API Source Files

P-708 User's Manual 50

application use, and should be included in all programs that call one or

more API utility routines.

P708_GLB.H

This header file contains the majority of the local API variables and data

structures.

AR_ERROR.H

This header file contains the error string constant definitions utilized by

the API routine P708_Get_Error, describing each of the potential error

codes returned by the ARINC 708 API utility routines.

P708_HW.H

This header file contains all of the API constants that define the hardware

interface for the ARINC 708 PMC architecture.

FPGA_708.H and FPGA_RP708.H

These header files contain the firmware program downloaded to the

respective ARINC 708 hardware during initialization of the board.

CEI_TYPES.H

This header file contains all of the constants that define the various data

types for the respective operating system and compiler.

P708_WIN.C

This file contains the C routines that interface directly with the Windows

operating system and low-level driver library. It should be included

along with the compilation of P708_API.C when the compiler directive

_WIN32 is defined (build for any Windows target).

P708_VXW.C

This file contains the routines that interface directly with the Abaco

Systems Avionics Avionics generic VxWorks PCI/VxBus drivers and

VxWorks kernel. It should be included along with the compilation of

P-708-SW Distribution and API API Source Files

P-708 User's Manual 51

P708_API.C when either of the compiler directives VXW_PCI_PPC or

VXW_PCI_X86 is defined.

P708_INT.C

This file contains the routines that interface directly with the Abaco

Systems Avionics Generic Integrity device driver file set. It should be

included along with the compilation of P708_API.C when the compiler

directive INTEGRITY_PCI_PPC is defined.

P708_LNX.C

This file contains the routines that interface directly with the Abaco

Systems Avionics generic Linux Support Package. It should be included

in your project along with the compilation of P708_API.C when either of

the compiler directives _LINUX_X86_or _LINUX_PPC_ is defined.

P708_UTIL.C

This file contains several ARINC 708 Frame Record/Playback feature

utilities designed for use with Windows operating systems. While these

utilities are not a part of the ARINC 708 API, they are provided in

generic C source to assist in your application development.

P708_SCH.C

This file contains utility routines specific to the ARINC 708 Protected

Frame Update feature, supporting the ability for the application to update

a specified number of frames in a scheduled sweep and avoid conflicting

with the frame data actively being read by the hardware. See Appendix

A, “Protected Frame Update Feature” for more information on this

feature.

P708_API.DEF and P708_API64.DEF

These files contain the ARINC 708 API-specific external library

references for use when building the API as a Dynamic Link Library

under 32-bit and 64-bit Windows operating systems, respectively.

P-708-SW Distribution and API Windows Libraries

P-708 User's Manual 52

Windows Libraries

The P-708-SW distribution provides both 32-bit and 64-bit Windows

DLLs. For Windows OS target implementation, all API function

prototypes are declared “_stdcall”. The ARINC 708 API library

included in the installation is referenced as:

◼ P708_API.LIB 32-bit Microsoft VS 6.0 Library

◼ P708_API.DLL 32-bit Microsoft VS 6.0 DLL

◼ P708_API64.LIB 64-bit Microsoft VS2008 Library

◼ P708_API64.DLL 64-bit Microsoft VS2008 DLL

Included with the P-708-SW installation is the Abaco Systems Common

Low-level driver interface and installation verification libraries (not

required for linking application programs):

◼ CEI_Install.DLL 32-bit Microsoft VS6.0 DLL

◼ CEI_Install64.DLL 64-bit Microsoft VS2008 DLL

Programming with the ARINC 708 API Interface

Following the outline below, you can easily incorporate the ARINC 708

API into your application.

1. For your application to interface to any P-708-SW supported

products the device must first be initialized. Invoke the P708_OPEN

routine as described in the API Routines section.

2. Assign the characteristics of the channels if the default configuration

is not appropriate. This is performed with multiple invocations of

P708_SET_CHANNEL_CONFIG.

3. Once channel configuration is complete, invoke P708_GO to initiate

data processing. In any case where the board is both transmitting

and receiving for a self-test scenario, it is best to separately enable

the receiver then transmitter using the OPERATIONAL_MODE

option with the P708_SET_CHANNEL_CONFIG routine.

4. To transmit frame/sweep data invoke P708_WRITE_FRAME(…)

and to receive frame/sweep data invoke P708_READ_FRAME(…).

5. When communication is complete, invoke P708_STOP to suspend

active data processing. Subsequently, you may enable the channels

again to restart data processing without reinitializing the interface.

6. On termination of the application, invoke P708_CLOSE to release

all resources acquired during initialization. It is very important that

all applications invoke P708_CLOSE upon termination; otherwise,

the operating system will not release the memory acquired when the

API was initialized.

P-708-SW Distribution and API Time-tag Data Definition

P-708 User's Manual 53

When calling the utility routines that return a status value, it is important

to verify the returned status indicates success; otherwise, the application

may not be aware that an important function may have failed to fulfill a

requested operation.

Time-tag Data Definition

The following API routines use the TIME_TAG_TYPE time-tag

definition in providing the time-tag reference for received frame data:

◼ P708_READ_FRAME_DATA_T

◼ P708_READ_FRAMES

Under most operating systems, the TIME_TAG_TYPE is defined as a

64-bit integer value. For those operating systems or board support

packages that do not support a 64-bit integer, the TIME_TAG_TYPE can

be compiled as a 32-bit pointer. In these cases only the lower 32 bits of

the received frame time-tag will be provided.

API Defined Data Types

The following data types are defined for use with the ARINC 708 API:

SINT32 integer

UINT32 unsigned integer

PINT32 unsigned integer *

SINT16 short integer

UINT16 unsigned short integer

PINT16 unsigned short integer *

SINT8 char

UINT8 unsigned char

PINT8 unsigned char *

SP_FLOAT single-precision float

Return Status Values

The following return status values are used by the ARINC 708 API

routines. They are defined in the C header file P708_API.H and are used

in the following context:

C Constant Value Constant Definition

ARS_FAILURE -1 Requested operation failed

ARS_NODATA 0 No data was received

ARS_NORMAL 1 Normal successful completion

P-708-SW Distribution and API Example Applications – Summary

P-708 User's Manual 54

C Constant Value Constant Definition

ARS_GOTDATA 4 Data was received

ARS_INVHARVAL 1003 Invalid configuration value

ARS_XMITOVRFLO 1004 Transmit buffer overflow

ARS_INVBOARD 1005 Invalid board argument

ARS_BADLOAD 1007 Firmware download failure

ARS_INVARG 1019 General invalid argument value

ARS_DRIVERFAIL 1022 Windows device driver error

ARS_BAD_STATIC 1027 SRAM Memory Test failure

ARS_WRAP_DATA_FAIL 1031 BIT wrap test data read-back fail

ARS_RX_OVERRUN 1037 Receive buffer overrun detected

Example Applications – Summary

Example applications for 32-bit and 64-bit Windows are available

beneath the P-708-SW distribution’s \Examples folder. Those examples

are described in detail below.

TST_CNFG.C

The example source file TST_CNFG.C is included with your installation.

To access this example executable under the Windows operating system:

1. Click Start, and then Programs.

2. Select Abaco P-708-SW and then Test Configuration.

The TST_CFG executable is located in the following:

 \Program Files\Condor Engineering\P-708-SW\Examples\C

The default execution of TST_CFG.EXE is to internally wrap frame

transmission of three standard (1600 bit) frames of ARINC 708 data with

channel 1 transmitting and channel 0 receiving. Command line

arguments are available with this example, as described below:

/BDx assign the ARINC 708 PMC Device ID as ‘x’

/EXT disable internal wrap on both channels

/ALT transmit 3 frames of an alternate frame size (1200 bits)

/SWP bypass the wrap examples and program the board to

transmit a sweep of 720 frames continuously from both

channels.

P-708-SW Distribution and API Example Applications – Summary

P-708 User's Manual 55

/DBS transmit a 720-frame sweep using a two buffer sources

in a double-buffered fashion, allowing for protected buffer

updates.

Within TST_CNFG.C are application-style routines demonstrating use of

the API routines for the ARINC 708 protocol:

testStandard708 an internal wrap test designed to

demonstrate basic ARINC 708 API usage,

using internal wrap to transmit and receive

three standard 1600-bit ARINC 708 frames.

testAlternate708 an internal wrap test designed to

demonstrate basic ARINC 708 API usage,

using internal wrap to transmit and receive

three non-standard 1200-bit frames.

sweepTransmit708 a demonstration of periodic sweep

transmission of a full 180˚ sweep of 720

1600-bit frames.

doubleBufferedSweepTransmit708 a demonstration of periodic

sweep transmission of a full 180˚ sweep of

720 1600-bit frames, using a double-

buffered methodology.

P708ECHO.C and P708UTIL.C

The example source files P708ECHO.C and P708UTIL.C/.H are

provided to demonstrate the ARINC 708 frame data recording and

playback capabilities provided for Windows application usage. To

access this example executable under the Windows operating system,

navigate to the following folder using the Windows Explorer:

 \Program Files\Condor Engineering\P-708-SW\Examples\C

The default execution of P708ECHO.EXE is to transmit on channel 0

and receive on channel 1 with device ID 0, using a frame size of 1600

bits, a single sweep recording of 720 frames, and binary data logging to a

file named ‘p708echo.dat’.

Modify the batch file P708ECHO.BAT with the appropriate command

line arguments, as described below:

/BDx assign the ARINC 708 Device ID as ‘x’

/TX1 reverse channel assignments, TX 1 - RX 0

/TEXT log received data in an ASCII text file

/PLAYBACK transmit the contents of a BINARY file

P-708-SW Distribution and API Example Applications – Summary

P-708 User's Manual 56

/FILE specify a data file to use (prompted)

/NOLOG disable received data logging to file

/NOECHO disable transmission of the received data

/FSnnnn assign a frame size other than 1600 bits

/FCnnnn assign a frame count other than 720 frames

The main routine within P708ECHO.C and the utilities provided in

P708UTIL.C demonstrate typical uses of the ARINC 708 API routines

for the ARINC 708 protocol:

p708_xmit_data_file transmits the contents of the specified

binary log file.

p708_bin_dump_frames writes the specified number of frames to the

specified output file in binary format.

p708_bin_read_frame reads a single frame from the specified

input file, content of which must be in a

binary format.

p708_dump_frames writes the specified number of frames to the

specified output file in an ASCII text

format.

SINGLE_FRAME_SWEEP.C

This file contains an example application demonstrating how to use a

timer-protected frame buffer update scheme to replicate the operations of

the IP-708.

The routine testSingleFrameUpdate() uses a single frame sweep, updated

to coincide with the period where the ARINC 708 hardware is not

reading the frame data, to support application transmission of a full

sweep on a frame-by-frame basis. The mechanism to update the frame

data when the hardware is idle uses a special API function set that

monitors the transmit frame counter. When the transmit frame counter

changes, the API has a brief period in which to update the frame data.

Successful operation of this feature assumes the sweep interval provides

a minimum number of milliseconds between the end of the frame's

transmission and the beginning of the next transmission of that frame. In

this example the sweep interval must be 2 milliseconds larger than the

duration required to transmit the frame.

P-708-SW Distribution and API .NET Development Support

P-708 User's Manual 57

.NET Development Support

Support for Microsoft Visual Studio .NET programming languages is

available through the use of a Visual Basic.NET Class “wrapper library”

called A708ClassLib.dll, invoking routines from the standard API C

library p708_api.dll. The .NET solution for this library and an example

C# application are available beneath the \Examples\Net folder. Note the

wrapper library A708ClassLib.dll is provided for use with 32-bit

applications. If you wish to implement this API wrapper method for a

64-bit application, you must modify the DLL reference in the “a708api”

class declaration in A708ClassLib.vb and modify the target DLL from

“P708_API.dll” to “P708_API64.dll”.

API Routines - Summary

The routines provided in the API supporting the P-708 device features

are defined in the following pages, categorized and summarized:

Initialization and Control Routines

p708_board_test Verifies the P-708 data processing

capabilities via internal/external data wrap.

p708_bypass_wrap_test Controls conditional execution of the

ARINC 708 internal wrap test invoked

from within p708_initialize_device.

p708_initialize_api Initializes the P-708 device API.

p708_initialize_device Initializes the P-708 device to the default

state.

p708_open Acquires the resources for, and initializes

the P-708 device.

Device Control Routines

p708_go Enables P-708 ARINC data processing.

p708_reset Disables P-708 ARINC data processing and

initializes the device to the default state.

p708_stop Disables P-708 ARINC data processing.

P-708-SW Distribution and API API Routines - Summary

P-708 User's Manual 58

Termination Routines

p708_close Releases all resources for the specified

device.

Configuration Routines

p708_get_channel_config Retrieves the value of a bit field or register.

p708_set_channel_config Assigns the value of a bit field or register.

Receive Data Processing Routines

p708_read_frames Retrieves the next ARINC 708 frame from

the receive buffer, used specifically for

standard sized 1600-bit frames.

p708_read_frame_data Retrieves the next ARINC 708 frame from

the receive buffer, used for any size frame.

p708_read_frame_data_t Retrieves the next ARINC 708 frame and

respective time-tag from the receive buffer,

used for any size frame.

Transmit Data Processing Routines

p708_write_frames Defines and modifies standard 1600-bit

ARINC 708 frame and error injection data.

p708_write_ei_data Defines frame error injection data.

p708_write_frame_data Defines any size ARINC 708 frame data.

p708_write_frame_data_wei Defines any size ARINC 708 frame and

error injection data.

p708_update_ei_data Modifies existing frame error injection

data.

p708_update_frame_data Modifies existing ARINC 708 frame data

already defined in the transmit buffer.

p708_update_frame_data_wei Modifies existing ARINC 708 frame

and error injection data already defined in

the transmit buffers.

P-708-SW Distribution and API API Routines - Summary

P-708 User's Manual 59

Information and Status Routines

p708_get_error Retrieves a message string associated with

a given error status code.

Utility Routines

p708_execute_bit Verifies the ARINC 708 PMC’s operational

state through various data wrap and

memory tests.

p708_read_device Low-level device read-access utility

p708_set_multithread_protect Enable/disable multithread access

protection to all API routines accessing the

hardware interface of the device

p708_wait Delays the calling application for the

specified number of seconds.

p708_write_device Low-level device write-access utility

p708_version Retrieves the current software version

number of the ARINC 708 API.

P-708-SW Distribution and API P708_BOARD_TEST

P-708 User's Manual 60

P708_BOARD_TEST

SINT32 p708_board_test (SINT32 board, SINT32 testType)

This routine performs a two frame (1600-bit) internal or external wrap

test with channel 0 configured to transmit and channel 1 configured to

receive.

Any invocation of this routine while either ARINC 708 channel is connected to an actively
transmitting LRU may result in a false failure status.

ARS_NORMAL routine was successful.

ARS_WRAP_DATA_FAIL wrap frame data pattern mismatch.

ARS_INVBOARD uninitialized or invalid board value.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 testType (input) type of test to execute. Valid values

for this parameter are:

 INTERNAL_WRAP (4)

 EXTERNAL_WRAP (5)

Syntax

Description

Note

Return Value

Arguments

P-708-SW Distribution and API P708_BYPASS_WRAP_TEST

P-708 User's Manual 61

P708_BYPASS_WRAP_TEST

SINT32 p708_bypass_wrap_test (SINT32 board , SINT32 bypass)

This routine defines an internal P-708 API flag used to control the

invocation of the API internal utility function P708_UTL_WRAP_TEST

routine during execution of P708_OPEN.

The default state of the bypass parameter is ON, indicating this internal

wrap test will not be executed during the initialization sequence executed

via P708_OPEN. Execution of this routine does not require an actively

open API session, and should occur prior to the invocation of

P708_OPEN with the bypass parameter set to OFF, if you wish the API

to perform the internal wrap test as a part of the device initialization

sequence. If invoked, P708_UTL_WRAP_TEST will perform a two-

frame internal transmit/receive wrap test across the ARINC 708 PMC

channel pair.

Any invocation of P708_OPEN with the internal wrap test execution enabled, while either
ARINC 708 channel is connected to an actively transmitting LRU, may result in a false
failure status.

ARS_NORMAL routine was successful.

ARS_INVBOARD invalid board value was supplied.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 bypass (input) controls whether or not to bypass

execution of the internal wrap test when the

routine P708_OPEN is invoked. Valid

values for this parameter are:

 AR_ON (7) bypass internal wrap test

 AR_OFF (8) execute internal wrap test

Syntax

Description

Note

Return Value

Arguments

P-708-SW Distribution and API P708_CLOSE

P-708 User's Manual 62

P708_CLOSE

SINT32 p708_close (SINT32 board)

This routine releases all resources acquired during the initialization of the

specified device and closes the session. Once this routine has been

executed, invoking P-708 API routines other than those that specifically

indicate support without an actively open session will result the return of

an error status.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized or invalid board value.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_EXECUTE_BIT

P-708 User's Manual 63

P708_EXECUTE_BIT

SINT32 p708_execute_bit (SINT32 board, SINT32 testType)

This routine performs the functionality normally associated with board-

level Initiated-BIT. Testing ranges from a full SRAM memory test to

verification of an ARINC 708 frame wrap on the specified device.

Any invocation of this routine with a testType parameter value assigned to anything other
than AR_BIT_PERIODIC or AR_BIT_PARTIAL_SRAM while either ARINC 708 channel is
connected to an actively transmitting LRU may result in a false failure status.

ARS_NORMAL routine was successful.

ARS_BAD_STATIC device SRAM test write/read/verify failure.

ARS_WRAP_DATA_FAIL ARINC 708 wrap test frame data pattern

mismatch.

ARS_INVBOARD uninitialized or invalid board value.

ARS_INVARG invalid testType parameter value provided,

or no free/unused SRAM was available for

a non-destructive memory test execution.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 testType (input) type of test to execute, defined as

follows:

AR_BIT_BASIC_STARTUP (0) invokes device

initialization, (including an unused SRAM memory test), via

invocation of P708_INITIALIZE_DEVICE.

AR_BIT_FULL_STARTUP (1) invokes device

initialization, (including an unused SRAM memory test), via

invocation of P708_INITIALIZE_DEVICE, followed by a

two frame (1600-bit) internal wrap test with channel 0

configured to transmit and channel 1 configured to receive.

AR_BIT_PERIODIC (2) invokes a non-

destructive pattern test of select unused SRAM locations.

AR_BIT_INT_LOOPBACK (3) invokes a two frame

(1600-bit each) internal wrap test with channel 0 configured

to transmit and channel 1 configured to receive.

AR_BIT_EXT_LOOPBACK (4) invokes a two frame

(1600-bit each) external wrap test with channel 0 configured

to transmit and channel 1 configured to receive.

Syntax

Description

Note

Return Value

Arguments

P-708-SW Distribution and API P708_EXECUTE_BIT

P-708 User's Manual 64

AR_BIT_PARTIAL_SRAM (8) invokes a short non-

destructive pattern test of select unused SRAM locations. If

all of SRAM is allocated to either channel’s data buffers, this

invocation returns a status value of ARS_INVARG.

AR_BIT_FULL_SRAM (9) invokes a

destructive six pattern test of all SRAM locations.

AR_BIT_SELECT_SRAM_MIN to

 AR_BIT_SELECT_SRAM_MAX (100 to 611)

invokes a destructive test of a select block of SRAM, parsed

into 512 blocks of 512 locations each.

P-708-SW Distribution and API P708_GET_BASE_ADDR

P-708 User's Manual 65

P708_GET_BASE_ADDR

CEI_ULONG p708_get_base_addr (SINT32 board)

This routine returns the allocated/virtual base address for the local

memory region of the specified device (PCI BAR 2 region).

Any positive value exceeding $80000 is the base address of the device.

ARS_INVBOARD an uninitialized or invalid board value.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_GET_BOARDTYPE

P-708 User's Manual 66

P708_GET_BOARDTYPE

SINT32 p708_get_boardtype (SINT32 board)

This routine returns the board type for the specified device.

A constant value less than 1000 indicates the type of ARINC 708 board

detected:

 PMC_708 (decimal 20)

 RP_708 (decimal 36)

ARS_INVBOARD uninitialized or invalid board value.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_GET_CHANNEL_CONFIG

P-708 User's Manual 67

P708_GET_CHANNEL_CONFIG

SINT32 p708_get_channel_config (SINT32 board, SINT32 channel,

UINT32 option, PINT32 data)

This routine returns the value/state of the specified control register bit

fields and other miscellaneous hardware registers.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized or invalid board value.

ARS_INVHARVAL Invalid channel parameter value

ARS_INVARG Invalid option parameter value

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

UINT32 option (input) bit field/register about which to

return the current state/value:

ANCILLARY_BUFFER_SIZE ancillary buffer size

ANCILLARY_BUFFER_START ancillary buffer starting address

ANCILLARY_BUFFER_END ancillary buffer ending address

DATA_BUFFER_SIZE frame data buffer size

DATA_BUFFER_START frame data buffer starting address

DATA_BUFFER_END frame data buffer ending address

A708_ERROR_INJECTION error injection enable bit

FRAME_COUNT frame count since reset

FRAME_INTERVAL duration between start of each frame

FRAME_GAP duration between transmitted frames

FRAME_SIZE frame size

OPERATIONAL_MODE data processing enable/disable bit

OPERATIONAL_DIRECTION transmit/receive selection bit

RECEIVE_BIT_ERROR receive bit error field state

SWEEP_SIZE number of frames in each sweep

SWEEP_COUNT number of sweeps buffer to repeat

SWEEP_INTERVAL duration between sweeps

SWEEP_REPEAT transmit buffer repeat sweep state

SELF_TEST external operation bit

PINT32 data (output) the current state/value of the

requested bit field/register:

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_GET_CHANNEL_CONFIG

P-708 User's Manual 68

If the requested item is ANCILLARY_BUFFER_SIZE (4), this routine

returns the computed value of the respective ARINC 708 PMC channel’s

ancillary data buffer size. This value is provided in terms of the storage

capacity of the buffer in words, based on the defined Ancillary Data

Start/Stop Address Register settings.

If the requested item is ANCILLARY_BUFFER_START (5), this

routine returns the current value of the respective ARINC 708 PMC

channel’s Ancillary Data Start Address Register.

If the requested item is ANCILLARY_BUFFER_END (6), this routine

returns the current value of the respective ARINC 708 PMC channel’s

Ancillary Data End Address Register.

If the requested item is DATA_BUFFER_SIZE (1), this routine returns

the computed value of the respective ARINC 708 PMC channel’s frame

data buffer size. This value is provided in terms of the storage capacity

of the buffer in frames, based on the Frame Bit Count and Frame Data

Start/Stop Address Register settings.

If the requested item is DATA_BUFFER_START (2), this routine

returns the current value of the respective ARINC 708 PMC channel’s

Frame Data Start Address Register.

If the requested item is DATA_BUFFER_END (3), this routine returns

the current value of the respective ARINC 708 PMC channel’s Frame

Data End Address Register.

If the requested item is A708_ERROR_INJECTION (19), this routine

returns the current state of the respective ARINC 708 PMC channel’s

Control Register Error Injection Enable Bit, indicated as either AR_ON

(7) or AR_OFF (8).

If the requested item is FRAME_COUNT (18), this routine returns the

current value of the respective ARINC 708 PMC channel’s Frame Count

Register. This value indicates how many frames have been transmitted

or received on the respective channel since the channel was enabled.

If the requested item is FRAME_INTERVAL (10), this routine returns

the current value of the respective ARINC 708 PMC channel’s Transmit

Frame Interval Register. This value indicates the duration between the

Start Sync Pulse of successive frames, in microseconds.

If the requested item is FRAME_GAP (8), this routine returns the

calculated frame gap value. The frame gap value is defined as the

duration between the Stop Sync Pulse and Start Sync Pulse of successive

frames, in microseconds. This value is derived from the value of the

Frame Interval Register, less the frame size (in bits) and Start/Stop Sync

Pulse duration.

P-708-SW Distribution and API P708_GET_CHANNEL_CONFIG

P-708 User's Manual 69

If the requested item is FRAME_SIZE (9), this routine returns the

current value of the respective ARINC 708 PMC channel’s Frame Bit

Count Register.

If the requested item is OPERATIONAL_MODE (13), this routine

returns the current state of the respective ARINC 708 PMC channel’s

Control Register Enable Bit, indicated as either AR_RUN (1) or

AR_STOP (0).

If the requested item is OPERATIONAL_DIRECTION (14), this routine

returns the current state of the respective ARINC 708 PMC channel’s

Control Register Direction Bit, indicated as either AR_TRANSMIT (1)

or AR_RECEIVE (0).

If the requested item is RECEIVE_BIT_ERROR (16), this routine

returns the current state of the respective ARINC 708 PMC channel’s

Control Register receive error bits (Under Bit Count & Over Bit Count),

indicated as:

NO_FRAME_ERROR 0 No Error Detected

LONG_FRAME_ERROR 1 Over Bit Count

SHORT_FRAME_ERROR 2 Under Bit Count

MULTIPLE_FRAME_ERROR 3 Both Over & Under

If the requested item is SWEEP_SIZE (9), this routine returns the current

value of the respective ARINC 708 PMC channel’s Transmit Sweep

Frame Count Register. This value indicates the number of frames to be

allocated to the transmission of each sweep.

If the requested item is SWEEP_INTERVAL (10), this routine returns

the current value of the respective ARINC 708 PMC channel’s Sweep

Interval Register. This value indicates the number of microseconds

inserted between the transmission of each sweep frame grouping.

If the requested item is SWEEP_REPEAT (11), this routine returns the

current state of the respective ARINC 708 PMC channel’s Control

Register Sweep Repeat Bit, indicated as either AR_ON (7) or AR_OFF

(8).

If the requested item is SWEEP_COUNT (12), this routine returns the

current value of the respective ARINC 708 PMC channel’s Sweep Count

Register. This value indicates how many sweep frame groupings are

repeatedly transmitted if the Sweep Repeat Bit is enabled.

If the requested item is SELF_TEST (17), this routine returns the current

state of the respective ARINC 708 PMC channel’s Control Register

Internal/External Transmit Select Bit, indicated as either

EXTERNAL_WRAP (0) or INTERNAL_WRAP (1).

P-708-SW Distribution and API P708_GET_ERROR

P-708 User's Manual 70

P708_GET_ERROR

PINT8 * p708_get_error (SINT32 status)

All of the API routines that interact with an ARINC 708 PMC device

return status values, a majority of which indicate an error condition.

When supplied with such an error value, this routine returns a pointer to

an API-supplied character string describing the error.

Review the section, “Return Status Values”, for the current list of

possible error codes and their explanations.

A pointer to the error message character string.

SINT32 status (input) a status value returned by any of the

ARINC 708 API routines.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_GO

P-708 User's Manual 71

P708_GO

SINT32 p708_go (SINT32 board)

This routine sets both of the ARINC 708 PMC channel’s Control

Register Enable bits to “enabled”. If set, it also resets both channel’s

Control Register Halt bits to zero. All message processing is activated

on execution of this routine, and all internal frame and address counters

reset for any channel defined for reception.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_INITIALIZE_API

P-708 User's Manual 72

P708_INITIALIZE_API

SINT32 p708_initialize_api (SINT32 board)

This routine opens a session with the specified ARINC 708 PMC device

and downloads the FPGA firmware, resetting the device to an initial

power-up state.

ARS_NORMAL routine was successful.

ARS_INVBOARD an invalid board value.

ARS_BADLOAD device firmware download failed.

ARS_DRIVERFAIL device driver failed to open a session or

acquire the necessary resources (Windows

and Linux operating systems, only).

ARS_FAILURE device driver failed to open a session or

acquire the necessary resources (VxWorks

and Integrity operating systems, only).

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_INITIALIZE_DEVICE

P-708 User's Manual 73

P708_INITIALIZE_DEVICE

SINT32 p708_initialize_device (SINT32 board)

This routine configures the ARINC 708 PMC to a default state, with both

channels defined as follows:

◼ Data processing disabled.

◼ Defined as receivers and set for external operation.

◼ Frame and Ancillary Data Buffer storage allocation set for a single

receive frame.

◼ All data buffer pointers reset to buffer start.

◼ Frame Size defined as 1600 bits.

◼ Frame Interval defined for four bit gap duration between frames.

◼ Sweep Size defined as a single frame.

◼ Sweep Interval defined for 500 milliseconds re-transmission rate.

◼ Sweep Count defined as a single sweep.

◼ Sweep Repeat disabled.

Subsequent to setup of these channel configurations, this routine will

execute a brief memory test of the onboard SRAM.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized or invalid board value.

ARS_BAD_STATIC unused SRAM test write/read/verify failure.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_OPEN

P-708 User's Manual 74

P708_OPEN

SINT32 p708_open (SINT32 board)

This routine acquires the address space/resources allocated to the device,

opens a session with the device, and invokes an initialization/reset

procedure. Following API and device initialization, optional invocation

of the internal API routine P708_UTL_WRAP_TEST can provide

verification of internal frame wrap operation, (execution of this test is

controlled via invocation of P708_BYPASS_WRAP_TEST, disable by

default).

See the routine descriptions under P708_INITIALIZE_API and

P708_INITIALIZE_DEVICE for details regarding the default setup of

the API and the device following execution of this routine.

If any portion of the initialization fails or the board is not detected, a

status other than ARS_NORMAL is returned.

ARS_NORMAL routine was successful.

ARS_INVBOARD invalid board value.

ARS_DRIVERFAIL device driver failed to open a session or

acquire the necessary resources (Windows

and Linux operating systems, only).

ARS_FAILURE device driver failed to open a session or

acquire the necessary resources (VxWorks

and Integrity operating systems, only).

ARS_BADLOAD device firmware download failed.

ARS_BAD_STATIC unused SRAM test write/read/verify failure.

ARS_WRAP_DATA_FAIL ARINC 708 internal wrap test frame data

pattern mismatch.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_READ_FRAMES

P-708 User's Manual 75

P708_READ_FRAMES

SINT32 p708_read_frames (SINT32 board, SINT32 channel, PINT32

frameCount, PINT32 bitErrorStatus, pRECEIVE_FRAME_TYPE data)

This routine retrieves a specified number of available ARINC 708 frames

and time-tag information from the requested receive channel buffer and

copies them to the desired destination. If the return value for the

frameCount parameter equals the value supplied, additional unread frame

data may be available in the receive buffer. This routine can be used

only with standard 1600-bit ARINC 708 frame reception. Since the

validity of the last word of the last received frame is not guaranteed, the

last received frame will not be included in the set of frames returned

from this routine.

ARS_GOTDATA one or more ARINC 708 frames were

retrieved from the buffer.

ARS_NODATA no unread ARINC 708 frames were

available in the buffer.

ARS_RX_OVERRUN a receive buffer overflow condition was

detected and the location of the most stale

frame data cannot be determined.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_INVARG invalid channel or frameCount parameter

value.

ARS_INVHARVAL the specified channel is invalid or the frame

size isn't defined to be 1600 bits.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

PINT32 frameCount (input/output) As an input, this parameter

specifies the number of frames to read; as

an output this parameter indicates the actual

number of frames read from the buffer.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_READ_FRAMES

P-708 User's Manual 76

PINT32 bitErrorStatus (output) A representation of the combined

state of the Receive Error Bits from the

Control Register as defined upon entering

the routine.

pRECEIVE_FRAME_TYPE data (output) The frame and time-tag data

retrieved from the P-708 receiver buffers;

formatted as follows:

 struct { TIME_TAG_TYPE timeTag;

 UINT32 controlWords[4];

 UINT32 binData[512];

 }

P-708-SW Distribution and API P708_READ_FRAME_DATA

P-708 User's Manual 77

P708_READ_FRAME_DATA

SINT32 p708_read_frame_data (SINT32 board, SINT32 channel,

PINT32 frameCount, PINT32 data)

This routine retrieves a specified number of available ARINC 708 frames

from the requested receive channel buffer and copies them to the desired

destination. If the return value for the frameCount parameter equals the

value supplied, additional unread frame data may be available in the

receive buffer. This routine can be used with any size frame. Since the

validity of the last word of the last received frame is not guaranteed, the

last received frame will not be included in the set of frames returned

from this routine.

ARS_GOTDATA one or more ARINC 708 frames were

retrieved from the buffer.

ARS_NODATA no unread ARINC 708 frames were

available in the buffer.

ARS_RX_OVERRUN a receive buffer overflow condition was

detected and the location of the most stale

frame data cannot be determined.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_INVARG invalid channel or frameCount parameter

value.

ARS_INVHARVAL the specified channel is invalid.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

PINT32 frameCount (input/output) As an input, this parameter

specifies the number of frames to read; as

an output this parameter indicates the actual

number of frames read from the buffer.

PINT32 data (output) Array to store frame data.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_READ_FRAME_DATA_T

P-708 User's Manual 78

P708_READ_FRAME_DATA_T

SINT32 p708_read_frame_data (SINT32 board, SINT32 channel,

PINT32 frameCount, PINT32 data)

This routine retrieves a specified number of available ARINC 708 frames

with their respective time-tags from the requested receive channel buffer

and copies them to the desired destinations. If the return value for the

frameCount parameter equals the value supplied, additional unread frame

data may be available in the receive buffer. This routine can be used with

any size frame. Since the validity of the last word of the last received

frame is not guaranteed, the last received frame will not be included in

the set of frames returned from this routine.

ARS_GOTDATA one or more ARINC 708 frames were

retrieved from the buffer.

ARS_NODATA no unread ARINC 708 frames were

available in the buffer.

ARS_RX_OVERRUN a receive buffer overflow condition was

detected and the location of the most stale

frame data cannot be determined.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_INVARG invalid channel or frameCount parameter

value.

ARS_INVHARVAL the specified channel is invalid.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

PINT32 frameCount (input/output) As an input, this parameter

specifies the number of frames to read; as

an output this parameter indicates the actual

number of frames read from the buffer.

PINT32 data (output) Array to store frame data.

pTIME_TAG_TYPE timeTag (output) Array to store time-tag data.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_RESET

P-708 User's Manual 79

P708_RESET

SINT32 p708_reset (SINT32board)

This routine invokes the p708_initialize_device routine. As a result of

executing this routine, all data buffers are reset and any data contained

therein will be lost.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized or invalid board value.

ARS_BAD_STATIC device SRAM test write/read/verify failure.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_SET_CHANNEL_CONFIG

P-708 User's Manual 80

P708_SET_CHANNEL_CONFIG

SINT32 p708_set_channel_config (SINT32 board, SINT32 channel,

UINT32 option, UINT32 data)

This routine assigns the value/state of the specified control register bit

fields or other miscellaneous hardware register.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized or invalid board value.

ARS_INVHARVAL Invalid channel parameter value

ARS_INVARG Invalid option or data parameter value

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

UINT32 option (input) bit field/register to assign the

state/value:

ANCILLARY_BUFFER_SIZE ancillary buffer size

ANCILLARY_BUFFER_START ancillary buffer starting address

ANCILLARY_BUFFER_END ancillary buffer ending address

DATA_BUFFER_SIZE frame data buffer size

DATA_BUFFER_START frame data buffer starting address

DATA_BUFFER_END frame data buffer ending address

A708_ERROR_INJECTION error injection enable bit

FRAME_INTERVAL duration between start of each frame

FRAME_GAP duration between transmitted frames

FRAME_SIZE frame size

OPERATIONAL_MODE data processing enable/disable bit

OPERATIONAL_DIRECTION transmit/receive selection bit

SWEEP_SIZE number of frames in each sweep

SWEEP_COUNT number of sweeps buffer to repeat

SWEEP_INTERVAL duration between sweeps

SWEEP_REPEAT transmit buffer repeat sweep state

SELF_TEST external operation bit

BUFFER_RESET reset data and ancillary buffers

UINT32 data (input) the state/value to assign to the

requested bit field/register:

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_SET_CHANNEL_CONFIG

P-708 User's Manual 81

If the specified item is ANCILLARY_BUFFER_SIZE (4), this routine

determines and assigns the respective ARINC 708 PMC channel’s

ancillary data buffer start and stop address register values based on the

size value provided. The value provided should be specified in terms of

the desired storage capacity of the buffer in words, with a valid range

from 1-2FFEh.

If the specified item is ANCILLARY_BUFFER_START (5), this routine

assigns the supplied word offset to the respective ARINC 708 PMC

channel’s Ancillary Data Start Address Register. The valid range is 0-

2FFEh.

If the specified item is ANCILLARY_BUFFER_END (6), this routine

assigns the supplied word offset to the respective ARINC 708 PMC

channel’s Ancillary Data Stop Address Register. The valid range is 1-

2FFFh.

If the requested item is DATA_BUFFER_SIZE (1), this routine assigns

the respective ARINC 708 PMC channel’s frame data buffer start and

stop address register values based on the number of frames requested.

The value provided will determine the resulting storage capacity of the

buffer, in frames, based on the defined frame size and the amount of

unused data buffer RAM available. The existing allocation for the

alternate channel may limit the actual data buffer size allocation with this

invocation. The valid range is 1-7FFFEh.

If the requested item is DATA_BUFFER_START (2), this routine

assigns the supplied word offset to the respective ARINC 708 PMC

channel’s Frame Data Start Address Register. The valid range is 0-

7FFFEh.

If the requested item is DATA_BUFFER_END (3), this routine assigns

the supplied word offset to the respective ARINC 708 PMC channel’s

Frame Data Stop Address Register. The valid range is 1-7FFFFh.

If the requested item is A708_ERROR_INJECTION (19), this routine

assigns the state of the respective ARINC 708 PMC channel’s Control

Register Error Injection Enable Bit to either enabled (AR_ON - 7) or

disabled (AR_OFF - 8).

If the requested item is FRAME_INTERVAL (7), this routine assigns the

supplied value to the respective ARINC 708 PMC channel’s Transmit

Frame Interval Register. This value specifies the duration between the

Stop Sync Pulses of successive frames, in microseconds.

If the requested item is FRAME_GAP (8), this routine will determine the

appropriate Frame Interval value and assign the supplied value to the

respective ARINC 708 PMC channel’s Transmit Frame Interval

Register. The frame gap value specifies the duration between the Stop

Sync Pulse and Start Sync Pulse of successive frames, in microseconds.

This value is added to the frame size (in bits) and Start/Stop Sync Pulse

P-708-SW Distribution and API P708_SET_CHANNEL_CONFIG

P-708 User's Manual 82

duration, with the resulting value applied to the respective Transmit

Frame Interval Register.

If the requested item is OPERATIONAL_MODE (13), this routine

assigns the current state of the respective ARINC 708 PMC channel’s

Control Register Enable Bit to either enabled (AR_RUN – 1) or disabled

(AR_STOP – 0 or AR_TX_HALT – 2). For a data value of

AR_TX_HALT, the respective channel’s Control Register Transmit

Terminate bit will be additionally set, immediately terminating

transmission regardless of the state of the current frame transmission. If

a data value of AR_RUN is specified for any channel setup for reception,

all of the internal frame counters and buffer address indices for that

channel will be reset to an initial state.

If the requested item is OPERATIONAL_DIRECTION (14), this routine

assigns the current state of the respective ARINC 708 PMC channel’s

Control Register Direction Bit to either transmit (AR_TRANSMIT – 1)

or receive (AR_RECEIVE – 0). In either case, all of the internal frame

counters and buffer address indices for that channel will be reset to an

initial state.

If the requested item is SWEEP_SIZE (9), this routine assigns the

supplied value to the respective ARINC 708 PMC channel’s Transmit

Sweep Frame Count Register. This value indicates the number of frames

to be allocated to the transmission of each sweep. The valid range for

this value is dependent on the frame size and data buffer allocation for

the respective channel.

If the requested item is SWEEP_INTERVAL (10), this routine assigns

the supplied value of the respective ARINC 708 PMC channel’s Sweep

Interval Register. This value indicates the number of microseconds

inserted between the transmission of each sweep frame grouping.

If the requested item is SWEEP_REPEAT (11), this routine assigns the

state of the respective ARINC 708 PMC channel’s Control Register

Sweep Repeat Bit to either enabled (AR_ON - 7) or disabled (AR_OFF -

8).

If the requested item is SWEEP_COUNT (12), this routine assigns the

supplied value of the respective ARINC 708 PMC channel’s Sweep

Count Register. This value indicates how many sweep frame groupings

are repeatedly transmitted if the Sweep Repeat Bit is enabled. The valid

range for this value is dependent on the number of sweeps defined in the

respective channel’s data buffer.

If the requested item is SELF_TEST (17), this routine assigns the state of

the respective ARINC 708 PMC channel’s Control Register External

Operation Bit to either external operation via EXTERNAL_WRAP (0) or

internal operation via INTERNAL_WRAP (1). The ability to configure

the ARINC 708 PMC to internally wrap transmitted data requires one

channel to be defined as Receive, the other channel to be defined as

P-708-SW Distribution and API P708_SET_CHANNEL_CONFIG

P-708 User's Manual 83

Transmit, and both channels External Operation Bit to be reset using the

INTERNAL_WRAP option. In this state, no external data is received or

transmitted through either channel’s transceiver.

P-708-SW Distribution and API P708_SET_MULTITHREAD_PROTECT

P-708 User's Manual 84

P708_SET_MULTITHREAD_PROTECT

SINT32 p708_set_multithread_protect (SINT32 board, SINT32 state)

This routine controls the use of mutex/semaphore protection around all

device and channel-specific accesses performed within the API routines.

This type of thread protection should be enabled for any multi-threaded

application or reentrant API usage.

Execution of this routine does not require an actively open API session,

but should occur prior to or immediately after the invocation of

P708_OPEN for any multi-threaded application.

ARS_NORMAL routine was successful.

ARS_INVBOARD invalid board value.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 state (input) Multi-thread protection setting;

 AR_ON enables mutex/semaphore

protection for all devices.

 AR_OFF disables mutex/ semaphore

protection for all devices.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_STOP

P-708 User's Manual 85

P708_STOP

short p708_stop (short board)

This routine assigns the global enable register Global Enable bit to be

disabled for the specified device. Upon execution of this routine, all

active message processing is immediately terminated and the internal

frame counters and data buffer indices are reset.

ARS_NORMAL routine was successful.

ARS_INVBOARD an uninitialized board or invalid board

value.

short board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_UPDATE_FRAME_DATA

P-708 User's Manual 86

P708_UPDATE_FRAME_DATA

SINT32 p708_update_frame_data (SINT32 board, SINT32 channel,

SINT32 startFrame, SINT32 frameCount, PINT32 data)

This routine overwrites the specified number of frames in the Frame

Data Buffer for the specified channel.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_INVARG invalid channel parameter value or the

specified frameCount and/or startFrame

aren’t currently allocated in the transmit

frame data buffer.

ARS_INVHARVAL the specified channel is not configured to

transmit.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

SINT32 startFrame (input) This parameter specifies the frame

offset at which to begin overwriting frames

in the transmit Frame Data Buffer.

SINT32 frameCount (input) This parameter specifies the number

of frames to overwrite in the transmit

Frame Data Buffer.

PINT32 data (input) This parameter references the data

to be placed into the respective P-708

Frame Data Buffer.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_UPDATE_FRAME_DATA_WEI

P-708 User's Manual 87

P708_UPDATE_FRAME_DATA_WEI

SINT32 p708_update_frame_data_wei (SINT32 board, SINT32 channel,

SINT32 startFrame, SINT32 frameCount, PINT32 data, PINT32 eiData)

This routine overwrites the specified number of frames and error

injection words in the respective data buffers for the specified channel.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_INVARG invalid channel parameter value or the

specified locations referenced by

frameCount and/or startFrame aren’t

currently allocated in the respective

transmit and/or ancillary data buffers.

ARS_INVHARVAL the specified channel is not configured to

transmit.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

SINT32 startFrame (input) This parameter specifies the frame

offset at which to begin overwriting data in

the transmit data buffers.

SINT32 frameCount (input) This parameter specifies the number

of frames and error injection words to

overwrite in the transmit data buffers.

PINT32 data (input) This parameter references the frame

data to be placed into the respective P-708

Frame Data Buffer.

PINT32 eiData (input) This parameter references the error

injection data to be placed into the

respective P-708 Ancillary Data Buffer.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_ UPDATE_EI_DATA

P-708 User's Manual 88

P708_ UPDATE_EI_DATA

SINT32 p708_update_frame_data (SINT32 board, SINT32 channel,

SINT32 startWord, SINT32 wordCount, PINT32 eiData)

This routine overwrites the specified number of error injection words in

the Ancillary Data Buffer for the specified channel.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_INVARG invalid channel parameter value or the

specified locations referenced by startWord

and/or wordCount aren’t currently allocated

in the Ancillary Data Buffer.

ARS_INVHARVAL the specified channel is not configured to

transmit.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

SINT32 startWord (input) This parameter specifies the word

offset at which to begin overwriting error

injection words in the transmit Ancillary

Data Buffer.

SINT32 wordCount (input) This parameter specifies the number

of error injection words to overwrite in the

transmit Ancillary Data Buffer.

PINT32 data (input) This parameter references the error

injection data to be placed into the

respective P-708 Ancillary Data Buffer.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_VERSION

P-708 User's Manual 89

P708_VERSION

void p708_version (char *verstr)

This routine will insert an ASCII representation of the current software

version number of the ARINC 708 API into the location specified via the

verstr parameter.

char *verstr (output) string representation of the API

Version number consisting of up to 5

characters.

Syntax

Description

Arguments

P-708-SW Distribution and API P708_WAIT

P-708 User's Manual 90

P708_WAIT

void p708_wait (float nsecs)

This routine blocks execution of the calling application by the specified

number of seconds. The delay is based on the respective O/S delay

utility, (such as “Sleep” or “taskDelay”).

float nsecs (input) number of seconds to delay.

Syntax

Description

Arguments

P-708-SW Distribution and API P708_WRITE_FRAMES

P-708 User's Manual 91

P708_WRITE_FRAMES

SINT32 p708_write_frames (SINT32 board, SINT32 channel, PINT32

frameCount, pTRANSMIT_FRAME_TYPE data)

This routine is designed to create a new or update an existing set of

standard 1600-bit frames in a transmit channel's buffer. When the frame

index in the data structure is set to zero, the respective frame is appended

to the last frame previously defined for this channel. On adding this

frame to the transmit buffer, the frame index structure member is updated

with a frame index value representing this frame in the buffer. This

index can then be used to subsequently update the respective frame data

content in the buffer.

The transmit frame data and ancillary buffer size is automatically

adjusted to fit the number of defined frames provided in the frame data

structure. By default the ARINC 708 device SRAM is evenly allocated

across both channels, with storage for up to 2621 frames provided for

each channel. Care are should be taken to manually adjust the frame data

and ancillary buffer start and/or stop address for the alternate channel

when storage of frame data in excess of this is required for the other

channel. It is important to note this routine does not automatically

reduce either channel’s data buffer allocation to accommodate a write-

frames request for the other channel.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_XMITOVRFLO transmit buffer overflow - indicates that

there was not enough room in the frame

data or ancillary buffer to store the

requested number of frames.

ARS_INVARG invalid channel parameter value.

ARS_INVHARVAL the specified channel is not configured to

transmit or its frame size isn't defined to be

1600 bits.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_WRITE_FRAMES

P-708 User's Manual 92

PINT32 frameCount (input/output) As an input, this parameter

specifies the number of frames to transmit;

as an output this parameter indicates the

actual number of frames placed into the

buffer.

pTRANSMIT_FRAME_TYPE data (input/output) This array of

structures contains the frame and error

injection data placed into the P-708 data

buffers as well as the API-assigned frame

index provided for updating previously

defined frame data; formatted as follows:

struct { UINT32 controlWords[4];

 UINT32 binData[512];

 UINT32 errorInjectionWord;

 UINT32 frameIndex;

}

P-708-SW Distribution and API P708_WRITE_FRAME_DATA

P-708 User's Manual 93

P708_WRITE_FRAME_DATA

SINT32 p708_write_frame_data (SINT32 board, SINT32 channel,

PINT32 frameCount, PINT32 data)

This routine writes the specified number of frames into the Frame Data

Buffer for the specified channel. This frame data is appended to any

frame data already defined in the transmit buffer, with the exception of

an invocation following execution of any API routine in which the

transmit buffer has been reset (P708_INITIALIZE_DEVICE, P708_GO,

P708_RESET, P708_STOP, or an invocation of

P708_SET_DEVICE_CONFIG with the OPERATIONAL_MODE or

OPERATIONAL_DIRECTION options).

This routine will accept any size frame data, based on the current frame

size programmed for the respective transmit channel. The data must be

presented in an array referenced by the data parameter with no unused

bits. This routine assumes error injection is either disabled or the

ancillary buffer for the respective transmit channel is defined using

P708_WRITE_EI_DATA. If the specified number of frames

(frameCount) exceeds the available buffer storage capacity, this routine

returns an overflow indication.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_XMITOVRFLO transmit buffer overflow - indicates that

there was not enough room in the frame

data buffer to store the requested number of

frames.

ARS_INVARG invalid channel parameter value.

ARS_INVHARVAL the specified channel isn’t configured to

transmit.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_WRITE_FRAME_DATA

P-708 User's Manual 94

PINT32 frameCount (input/output) As an input, this parameter

specifies the number of frames to store in

the transmit frame data buffer; as an output

this parameter indicates the actual number

of frames placed into the buffer.

PINT32 data (input) References the data to be placed

into the respective P-708 frame data buffer.

P-708-SW Distribution and API P708_WRITE_FRAME_DATA_WEI

P-708 User's Manual 95

P708_WRITE_FRAME_DATA_WEI

SINT32 p708_write_frame_data (SINT32 board, SINT32 channel,

PINT32 frameCount, PINT32 data, PINT32, eiData)

This routine writes the specified number of frames into the frame data

buffer and a respective number of error injection words into the ancillary

buffer, for the specified channel. The frame and error injection data is

appended to any frame and error injection data already defined in the

respective buffers, with the exception of any API routine in which the

transmit buffer has been reset (P708_INITIALIZE_DEVICE, P708_GO,

P708_RESET, P708_STOP, or an invocation of

P708_SET_DEVICE_CONFIG with the OPERATIONAL_MODE or

OPERATIONAL_DIRECTION options).

This routine accepts any size frame data, based on the current frame size

programmed for the respective transmit channel. The data must be

presented in an array referenced by the data parameter with no unused

bits. Each word of the error injection array corresponds to the respective

ancillary buffer word for the assigned frame of data. Only the lower 4

bits of each error injection array element are used.

Invocation of this routine does not enable error injection for the

respective channel; instead, error injection must be enabled via

invocation of AR_SET_CHANNEL_CONFIG. If the specified number

of frames (frameCount) exceeds the available buffer storage capacity,

this routine returns an overflow indication.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_XMITOVRFLO transmit buffer overflow - indicates that

there was not enough room in the frame

data or ancillary buffer to store the

requested number of frames.

ARS_INVARG invalid channel parameter value.

ARS_INVHARVAL the specified channel isn’t configured to

transmit.

Syntax

Description

Return Value

P-708-SW Distribution and API P708_WRITE_FRAME_DATA_WEI

P-708 User's Manual 96

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

PINT32 frameCount (input/output) As an input, this parameter

specifies the number of frames to store in

the transmit frame data buffer; as an output

this parameter indicates the actual number

of frames placed into the buffer.

PINT32 data (input) This array references the data to be

placed into the respective P-708 frame data

buffer.

PINT32 eiData (input) This array references the error

injection data to be placed into the

respective P-708 ancillary data buffer, with

one word allocated for each frame

specified. Reference the Error Injection

description in Chapter 4 for a description of

the error injection options.

Arguments

P-708-SW Distribution and API P708_WRITE_EI_DATA

P-708 User's Manual 97

P708_WRITE_EI_DATA

SINT32 p708_write_ei_data (SINT32 board, SINT32 channel, PINT32

wordCount, PINT32, eiData)

This routine writes the specified number of error injection words into the

ancillary buffer for the specified channel. These error injection words is

appended to any error injection words already defined in the transmitter

Ancillary Buffer, with the exception of any API routine in which the

transmit buffer has been reset (P708_INITIALIZE_DEVICE, P708_GO,

P708_RESET, P708_STOP, or an invocation of

P708_SET_DEVICE_CONFIG with the OPERATIONAL_MODE or

OPERATIONAL_DIRECTION options).

Each word of the error injection array corresponds to the respective

ancillary buffer word for the assigned frame of data. Only the lower 4

bits of each error injection array element are used.

Invocation of this routine does not enable error injection for the

respective channel; instead, error injection must be enabled via

invocation of AR_SET_CHANNEL_CONFIG. If the value of the

wordCount parameter exceeds the available buffer storage capacity, this

routine returns an overflow indication.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_XMITOVRFLO transmit buffer overflow - indicates that

there was not enough room in the ancillary

buffer to store the requested number of

error injection words.

ARS_INVARG invalid channel parameter value.

ARS_INVHARVAL the specified channel isn’t configured to

transmit.

Syntax

Description

Return Value

P-708-SW Distribution and API P708_WRITE_EI_DATA

P-708 User's Manual 98

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) ARINC 708 channel to access.

Valid values are 0 and 1.

PINT32 wordCount (input/output) As an input, this parameter

specifies the number of words to store in

the transmit ancillary data buffer; as an

output this parameter indicates the actual

number of words placed into the buffer.

PINT32 eiData (input) This array references the error

injection data to be placed into the

respective P-708 ancillary data buffer, with

one word allocated for each frame

specified. See “Error Injection” in chapter

4, “ARINC 708 PMC Product Features” for

a description of the error injection options.

Arguments

P-708-SW Distribution and API P708_READ_DEVICE

P-708 User's Manual 99

P708_READ_DEVICE

SINT32 p708_read_device (SINT32 board, UINT32 offset, PINT32

data)

This routine reads a 32-bit value from the device based on the specified

32-bit (long word) offset to the board’s base virtual address. An example

of the use of this routine is to read the programmed firmware version

from the RP-708 Firmware Version Register:

p708_read_device(board, RP708_FIRMWARE_VERSION,

&fwVersion);

ARS_NORMAL routine was successful.

ARS_FAILURE invalid board or offset parameter value.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

UINT32 offset (input) The long word (32-bit) offset from

the base of the device host interface to read.

PINT32 data (output) data value read from the device. If

the offset resides in the Ancillary or Frame

Data Buffer regions, this value contains the

contents of two successive device locations

in the lower and upper 16 bits.

Syntax

Description

Return Value

Arguments

P-708-SW Distribution and API P708_WRITE_DEVICE

P-708 User's Manual 100

P708_WRITE_DEVICE

SINT32 p708_write_device (SINT32 board, UINT32 offset, SINT32

data)

This routine writes a 32-bit value to the device based on the specified 32-

bit (long word) offset to the board’s base virtual address.

ARS_NORMAL routine was successful.

ARS_FAILURE invalid board or offset parameter value.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

UINT32 offset (input) The long word (32-bit) offset from

the base of the device host interface to

write.

PINT32 data (input) data value written to the device. If

the offset resides in the Ancillary or Frame

Data Buffer regions, this value overwrites

the contents of two successive device

locations using the lower and upper 16 bits

of this value.

Syntax

Description

Return Value

Arguments

P-708 User's Manual 101

CHAPTER 9

ARINC 708 PMC Hardware Interface

Overview

This chapter describes the low level programming of the ARINC 708

PMC products.

The information in this chapter is provided for those who intend to author their own
software interface and device driver.

Control of an ARINC 708 PMC device is performed by reading and

writing FPGA registers and SRAM, mapped into host memory space

through the PCI BAR2 memory region. To program the device, you

must first know where this memory region was mapped in host memory

space. The following sections describe configuration registers and

memory layout. Each one has its own unique address given as an offset

from the beginning of the BAR2 memory region for the device. All

SRAM and registers can be read and write via 32-bit access.

Note:

ARINC 708 PMC Hardware Interface PCI Configuration Space

P-708 User's Manual 102

PCI Configuration Space

Table 11 describes the PCI Configuration Space definition for all ARINC

708 PMC products.

Table 11. ARINC 708 Product PCI Configuration Space

31 23 15 7 Offset

Device ID

0708h or 708Ah

Vendor ID

13C6h

00h

Status Command 04h

Base class

06h

Sub-class

80h

Interface

00h

Revision ID

00h

08h

BIST

Reserved

00h

Header type

00h

Latency Timer

Reserved

00h

Cache Line Size

Reserved

00h

0Ch

Base Address Register 0 for memory-mapped local configuration registers (128
or 512 bytes)

10h

Base Address Register 1 for I/O-mapped local configuration registers 14h

Base Address Register 2 (4 Mbytes) local bus (FPGA access) 18h

Base Address Register 3 (reserved) 1Ch

Base Address Register 4 (reserved) 20h

Base Address Register 5 (reserved) 24h

Cardbus CIS Pointer (reserved) 00000000h 28h

Subsystem ID

0708h or 708Ah

Subsystem Vendor ID

13C6h

2Ch

Expansion ROM Base Address (reserved) 30h

Reserved 0x00000000h 34h

Reserved 0x00000000h 38h

MAX_LAT

00h

MIN_GNT

00h

Interrupt pin

00h

Interrupt line

00h

3Ch

ARINC 708 PMC Hardware Interface Host Memory Map

P-708 User's Manual 103

Host Memory Map

Table 12 summarizes the BAR2 memory-mapped “host interface” for all

ARINC 708 PMC products. It is described in detail in the following

sections.

Table 12. ARINC 708 Product Host Memory Map

Byte Offset Read/Write Description
0x00000000 Read/Write Channel 0 Control Register

0x00000004 Read/Write Channel 0 Frame Data Start Address Register

0x00000008 Read/Write Channel 0 Frame Data Stop Address Register

0x0000000C Read/Write Channel 0 Ancillary Data Start Address Register

0x00000010 Read/Write Channel 0 Ancillary Data Stop Address Register

0x00000014 Read/Write Channel 0 Frame Bit Count Register

0x00000018 Read only Channel 0 Frame Count Register

0x0000001C Read/Write Channel 0 Transmit Frame Interval Register

0x00000020 Read/Write Channel 0 Transmit Sweep Frame Count Register

0x00000024 Read/Write Channel 0 Transmit Sweep Interval Register

0x00000028 Read/Write Channel 0 Transmit Sweep Count Register

0x0000002C Read Only Firmware Version (RP-708 only)

0x00000030 Read/Write Temp Sensor Read Command (RP-708 only)

0x00000034 Write Only Temp Sensor Write Command (RP-708 only)

0x00000038 –
0x000000FF

n/a Reserved

0x00000100 Read/Write Channel 1 Control Register

0x00000104 Read/Write Channel 1 Frame Data Start Address Register

0x00000108 Read/Write Channel 1 Frame Data Stop Address Register

0x0000010C Read/Write Channel 1 Ancillary Data Start Address Register

0x00000110 Read/Write Channel 1 Ancillary Data Stop Address Register

0x00000114 Read/Write Channel 1 Frame Bit Count Register

0x00000118 Read only Channel 1 Frame Count Register

0x0000011C Read/Write Channel 1 Transmit Frame Interval Register

0x00000120 Read/Write Channel 1 Transmit Sweep Frame Count Register

0x00000124 Read/Write Channel 1 Transmit Sweep Interval Register

0x00000128 Read/Write Channel 1 Transmit Sweep Count Register

0x0000012C –
0x0000FFFF

n/a Reserved

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 104

Byte Offset Read/Write Description
0x00010000 –
0x00015FFF

Read/Write Ancillary Data Buffer (FPGA Dual-Port Memory)

0x00016000 –
0x000FFFFF

n/a Reserved

0x00100000 –
0x001FFFFF

Read/Write Frame Data Buffer (SRAM)

0x00200000 –
0x003FFFFF

n/a Reserved

Hardware Registers and Memory

Control Register

31-11 10 9 8 7 6 5 4 3 2 1 0

Unused SF EI EXT LFE SFE RBE RSA RPT HALT ENA MODE

The fields in the Control Register are described in Table 13.

Table 13. Control Register Fields

Field Description Values
MODE

(read/write)

This bit is used to configure the
channel to receive or transmit
operation.

0 = receive (reset condition)

1 = transmit

ENA

CHANNEL ENABLE

(read/write)

This bit is used to enable and disable
data processing on the channel. When
disabled, all data buffer actions are
halted, and the internal tracking of data
buffer accesses are cleared; however,
active transmission and/or reception
of a currently incomplete frame of data
will proceed to completion before data
buffer processing stops.

0 = channel disabled

1 = channel enabled

HALT

(write only)

This bit is used to halt frame
transmission or reception immediately.
This bit should be toggled during
board/channel initialization to assure
all transmit/receive activity from a
previous session has ceased.

0 = disabled

1 = terminate immediately

RPT

SWEEP REPEAT

(read/write)

This bit enables periodic transmission
of the defined number of sweeps at the
defined sweep interval. When disabled,
the entire contents of the respective
frame data buffer is transmitted one
time following channel enable.

0 = repeat disabled

1 = repeat enabled

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 105

Field Description Values
RSA

RESET START
ADDRESS

(write only)

This bit causes the firmware buffer
reference to reset to the start of the
buffer at the end of the current
transmit sweep or receive frame.

0 = disabled

1 = reset requested

RBE

RECEIVE BIT ERROR

(read only)

This bit will be set if the receive frame
decoder encounters any bit error within
any received frame. It is self-cleared
when this register is read.

0 = no error encountered

1 = a bit error was detected

SFE

SHORT FRAME BIT
ERROR

(read only)

This bit will be set if the receive frame
decoder encounters any frame
containing fewer bits than what is
defined in the respective channel
Frame Bit Count register. It is self-
cleared when this register is read.

0 = no error encountered

1 = a short frame error was detected

LFE

LONG FRAME BIT
ERROR

(read only)

This bit will be set if the receive frame
decoder encounters any frame
containing more bits than what is
defined in the respective channel
Frame Bit Count register. It is self-
cleared when this register is read.

0 = no error encountered

1 = a long frame error was detected

EXT

EXTERNAL OPERATION

(read/write)

This bit enables external operation on
this channel. When one channel is
configured to receive and the other to
transmit, and this bit is cleared on both
channels, internal wrap of transmitted
data is enabled and external
transmission/reception is disabled on
both channels.

0 = external operation is disabled

1 = external operation is enabled

EI

ERROR INJECTION

(read/write)

This bit enables the use of the defined
Ancillary Data Buffer as the error
injection definition for all transmit
frames defined in the respective Frame
Data Buffer.

0 = error injection disabled

1 = error injection enabled

SF This read-only bit provides status of
communication with an on-board
security device. When this bit is set,
transmitting and receiving of 708 data
is disabled. This bit should never be
set. Contact Abaco Systems Avionics
technical support if experiencing
problems.

0 = Security OK

1 = Security Failure

Frame Data Start Address Register

31 – 20 19 - 0

Unused Frame Data Buffer Start Offset

The Frame Data Start Address Register defines the lower boundary of

the Frame Data Buffer region assigned to the respective channel. This

offset must be assigned as a word offset on a word boundary basis, with

a valid range from 0 to $7FFFE. For proper operation, this assigned

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 106

offset must not equal to or exceed the value of the respective channel’s

Frame Data Stop Address Register. When both channels are enabled, the

value assigned to this register for one channel must not reside in the

Frame Data Buffer region assigned to the other channel.

For any channel configured to transmit, this register contains the offset

into the Frame Data Buffer where the transmit control function begins

reading frame data. For any channel configured to receive, this register

contains the offset into the Frame Data Buffer where the receive control

function begins storing received frame data.

Frame Data Stop Address Register

31 – 20 19 - 0

Unused Frame Data Buffer Stop Offset

The Frame Data Stop Address Register defines the upper boundary of the

Frame Data Buffer region assigned to the respective channel. This offset

must be assigned as a word offset on a word boundary basis, with a valid

range from 1 to $7FFFF. For proper operation, this assigned offset must

not be less than or equal to the value of the respective channel’s Frame

Data Start Address Register. When both channels are enabled, the value

assigned to this register for one channel must not reside in the Frame

Data Buffer region assigned to the other channel.

For any channel configured to transmit, this register contains the last

offset location in the Frame Data Buffer where the transmit control

function reads frame data.

For any channel configured to receive, this register contains the last

offset location in the Frame Data Buffer where the receive control

function stores received frame data. When this offset location is

encountered, the receive function resets its internal buffer pointers and

continues storing data in the buffer based on the respective Frame Data

Start Address Register offset value.

Ancillary Data Start Address Register

31 – 20 19 - 0

Unused Frame Data Buffer Start Offset

The Ancillary Data Start Address Register defines the lower boundary of

the Ancillary Data Buffer region assigned to the respective channel. This

offset must be assigned as a word offset on a word boundary basis, with

a valid range from 0 to $2FFE. For proper operation, this assigned offset

must not equal or exceed the value of the respective channel’s Ancillary

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 107

Data Stop Address Register. When both channels are enabled, the value

assigned to this register for one channel must not reside in the Ancillary

Data Buffer region assigned to the other channel.

For any channel configured to transmit with error injection enabled, this

register contains the offset into the Ancillary Data Buffer where the

transmit control function begins reading error injection data. For any

channel configured to receive, this register contains the offset into the

Ancillary Data Buffer where the receive control function begins storing

received frame time-tags.

Ancillary Data Stop Address Register

31 – 20 19 - 0

Unused Frame Data Buffer Stop Offset

The Ancillary Data Stop Address Register defines the upper boundary of

the Ancillary Data Buffer region assigned to the respective channel. This

offset must be assigned as a word offset on a word boundary basis, with

a valid range from 1 to $2FFF. For proper operation, this assigned offset

must not be equal or less than the value of the respective channel’s

Ancillary Data Start Address Register. When both channels are enabled,

the value assigned to this register for one channel must not reside in the

Ancillary Data Buffer region assigned to the other channel.

For any channel configured to transmit with error injection enabled, this

register contains the offset into the Ancillary Data Buffer where the

transmit control function ceases reading error injection data.

For any channel configured to receive, this register contains the last

offset location in the Ancillary Data Buffer where the receive control

function will store received frame time-tags. When this offset location is

encountered, the receive function resets its internal buffer pointers and

continues storing time-tags in the buffer based on the respective

Ancillary Data Start Address Register offset value.

Frame Bit Count Register

31 – 24 23 - 0

Unused Frame Size (in bits)

The Frame Bit Count Register defines the bit size of the respective

channel’s frame. For transmission, the Frame Size informs the transmit

control function how many bits to read from the Frame Data Buffer and

insert between the Start Sync and Stop Sync Pulses. For reception, the

Frame Size informs the receive control function of how many bits are

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 108

expected to be received in each frame. The receive control function

compares the number of bits actually present between the incoming Start

Sync and Stop Sync Pulses and indicates any deviation via the respective

Control Register receive error bit(s).

The Frame Size is also used within the API frame transmit and receive

functions to determine the exact word and bit offsets in the Frame Data

Buffer when accessing frame data.

Frame Count Register

31 – 0

Frame Count

The Frame Count Register indicates how many frames have been

transmitted or received since the respective channel was last enabled.

The Frame Count is reset to zero when the respective channel is disabled.

Transmit Frame Interval Register

31 – 16 15 - 0

Unused Frame Interval Count

The Transmit Frame Interval Register defines the duration, in

microseconds, from the leading edge of the Start Sync Pulse between

consecutive frames. The Frame Interval Count must always be assigned

a value greater than the duration required to transmit the programmed

frames. Specifically, the Frame Interval Count should exceed the value

assigned in the respective channel’s Frame Bit Count Register plus six

(six microseconds is the duration of the start and stop sync pulse widths).

The actual frame interval implemented by the transmit control function is

one greater than the Frame Interval Count.

Transmit Sweep Frame Count Register

31 – 24 23 - 0

Unused Sweep Frame Count

The Transmit Sweep Frame Count Register defines how many frames are

assigned to each sweep “frame grouping”. This provides a frame count

to the transmit control at which the Sweep Interval is inserted.

The Sweep Frame Count must never be 0. Note:

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 109

Transmit Sweep Interval Register

31 – 24 23 - 0

Unused Sweep Interval Count

The Transmit Sweep Interval Register defines how many microseconds

of delay is inserted between the transmissions of each defined sweep in

the Frame Data Buffer. The delay begins at the end of the Stop Sync

Pulse and ends with the beginning of the next frame’s Start Sync Pulse.

The actual duration of the delay is one microsecond greater than the

Sweep Interval Count. If it is less than the value of the Frame Interval

Count, the Sweep Interval Count is superseded by the minimum duration

between transmitted frames as specified via the Frame Interval Count.

Transmit Sweep Count Register

31 – 8 7 – 0

Unused Sweep Count

The Transmit Sweep Count Register defines the number of sweeps from

the Frame Data Buffer to transmit. This includes the number of sweeps

to repeat when the Control Register Sweep Repeat bit is enabled, or the

number of sweeps to transmit on a one-shot basis when the Control

Register Sweep Repeat bit is disabled.

Firmware Revision Register (RP-708 Only)

31 – 16 15 - 0

Unused Firmware Revision

This register provides the FPGA firmware revision of the RP-708.

Temp Sensor Read Command Register (RP-708 Only)

Write
31 – 8 7 – 0

Unused cmd

Read
31-9 8 7 – 0

Unused otn cmd

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 110

The RP-708 uses a Maxim MAX6658 temperature sensor at location

U31 to give an indication of the PCB board temperature. The Temp

Sensor Read Command Register allows the reading of various registers

within the MAX6658 using the Read Byte format. To read a particular

register, you write its’ register address as the command. After waiting

700 us, you then read this register.

Bit 8 of the read register is the programmable internal over temperature

limit and comes directly from the MAX6658 as the OVERT# (low true)

signal. The default limit is 85C but can be changed via the RWOL device

register.

As an example, if you wish to read the MAX6658 Manufacture ID, you

would first write a 0xFE, the Read Manufacturer ID address. After

700us, you would read this register to get 0x4D, the devices Read

Manufacturer ID in the lower 8 bits. The OTN bit may or may not be set.

To read the board temperature, you write a ‘0’, the address to read the

MAX6658 internal temperature. After 700us, you read this register

where the lower 8 bits is the board two’s complement temperature in

degrees Celsius. A returned value of 0x19 would convert to 25C whereas

a value of 0xE7 corresponds to -25C (0xFF – 0xE7 + 1).Refer to the

device datasheet for more detailed information.

Temp Sensor Write Command Register (RP-708 Only)

Write
31 – 16 15 – 8 7 – 0

Unused data cmd

The Temp Sensor Write Command Register allows the setting of

programmable registers within the MAX6658 using the Write Byte

format.

As an example, if you wish to change the OVERT# limit (ROWL

register address 0x20) to 70C, you would convert 70 decimal to 0x46 and

write 0x4620 to this register. If you want to verify what you wrote, you

would then write 0x20 to the Temp Sensor Read Command Register,

wait 700 us and then read the Temp Sensor Read Command Register

where you should read 0x46.

Ancillary Data Buffer

The Ancillary Data Buffer consists of FPGA dual-port memory allocated

to two different functions depending on whether a channel is configured

to transmit or receive data.

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 111

Receive Time-tagging

When a channel is configured to receive data, the Ancillary Data Buffer

is used to store an internal 48-bit, one microsecond resolution time-tag

value at which a frame’s Start Sync Pulse is detected. The timer value is

stored in three consecutive words with the least significant 16 bits stored

in the first word and the most significant 16 bits stored in the last word,

as shown in the following table:

Ancillary Byte
Offset Data

0 First Frame Time-tag Low Word

2 First Frame Time-tag Mid Word

4 First Frame Time-tag High Word

6 Second Frame Time-tag Low Word

8 Second Frame Time-tag Mid Word

10 Second Frame Time-tag High Word

… …

The timer resets and begins counting from zero when the receiver

transitions from disabled to enabled.

Transmit Error Injection

When a channel is configured to transmit data, the Ancillary Data Buffer

is used to define error injection data. The data is referenced sequentially

by the transmit control function on a frame-by-frame basis, with each

location containing the error injection data for the respective frame

defined in the Frame Data Buffer. Transmit Error Injection data is

ignored if the EI bit in the respective Control Register (bit 9) is defined

to be “disabled".

The definition of an error injection data word is described below:

15 – 4 3 2 1 0

Unused SPSPI STSPI SFE LFE

The fields in an Error Injection Data Word are described in Table 14.

Table 14. Error Injection Data Word Fields

Field Description Values

ARINC 708 PMC Hardware Interface Hardware Registers and Memory

P-708 User's Manual 112

Field Description Values
LFE

LONG FRAME ERROR

When this error injection bit is set to
enabled, the respective frame is
transmitted with an additional bit over
the value specified in the Frame Bit
Count Register, inserted at the end of
the frame.

0 = disabled

1 = enabled

SFE

SHORT FRAME ERROR

When this error injection bit is set to
enabled, the respective frame is
transmitted with one bit less than the
value specified in the Frame Bit Count
Register, removed from the end of the
frame.

0 = disabled

1 = enabled

STSPI

START SYNC PULSE
INVERSION

When this error injection bit is set to
enabled, the respective frame is
transmitted with an inverted Start Sync
Pulse.

0 = disabled

1 = enabled

SPSPI

STOP SYNC PULSE
INVERSION

When this error injection bit is set to
enabled, the respective frame is
transmitted with an inverted Stop Sync
Pulse.

0 = disabled

1 = enabled

P-708 User's Manual 113

APPENDIX A

Protected Frame Update Feature

Overview

To assist with integration of ARINC 708 PMC products into Windows-

based applications currently designed around the operation of the IP-708,

a feature referenced as the “Protected Frame Update” is provided with

the ARINC 708 API.

Most ARINC 708 Windows applications based on the IP-708 and IP-

AVIONICS API utilize the frame transmission method using repeated

invocations of the IP708_PUT_FRAME routine. This method provides

for active storage of up to 307 ARINC 708 frames in the IP-708 transmit

buffer, allowing for simultaneous application frame definition and IP-

708 frame transmission.

Since the ARINC 708 PMC product sweep/frame buffering method does

not provide a guarantee that application updates to an active transmit

buffer won’t occur on frames that are simultaneously being read by the

P-708 hardware, the Protected Frame Update feature was created. This

feature provides a method to define a sweep using a fixed frame count,

then update the contents of those frames between the time the last word

of the last frame transmission completes and the time at which the

subsequent transmission of the first word of the first frame begins.

In support of this feature, three routines were added to the ARINC 708

API, p708_frame_transmit_start, p708_frame_transmit_stop, and

p708_request_frame_transmission, described in the following pages of

this document. To use these routines the application should setup the P-

708 hardware in a fashion similar to what is presented in the example C

source file, SINGLE_FRAME_SWEEP.C. While this example uses a

single frame sweep, a sweep containing any number of frames can be

used with the Protected Frame Update feature.

Protected Frame Update Feature p708_frame_transmit_start

P-708 User's Manual 114

p708_frame_transmit_start

SINT32 p708_frame_transmit_start (SINT32 board, UINT32

polling_interval)

This routine initiates a Windows periodic Multimedia Timer interrupt to

invoke the internal ARINC 708 API frame update request process at the

rate specified via polling_interval. The minimum rate at which the frame

update request process executes is one millisecond; however, the rate

value may impact application throughput at that value. For optimal

performance, the rate value supplied should be set to one-half the

duration between the time required to transmit the defined sweep and the

programmed sweep interval.

ARS_NORMAL routine was successful.

ARS_SYNCTIMEOUT the multimedia timer resource could be

acquired.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

UINT32 polling_interval (input) the multimedia timer interval at

which the frame update request process will

be invoked. Only one interval, the last one

requested, is used.

Syntax

Description

Return Value

Arguments

Protected Frame Update Feature p708_frame_transmit_stop

P-708 User's Manual 115

p708_frame_transmit_stop

void p708_frame_transmit_start (void)

This routine terminates a Windows periodic Multimedia Timer interrupt

process previously generated to invoke the internal ARINC 708 API

frame update request.

None.

None.

Syntax

Description

Return Value

Arguments

Protected Frame Update Feature p708_request_frame_transmission

P-708 User's Manual 116

p708_request_frame_transmission

SINT32 p708_request_frame_transmission (SINT32 board, SINT32

channel, SINT32 type, UINT32 frameCount, void * data)

This routine provides the method for the application to request an update

to the current transmit channel frame buffer with the supplied frame data,

to occur at the next available break in the P-708 sweep scheduler.

ARS_NORMAL routine was successful.

ARS_INVBOARD uninitialized board or invalid board value.

ARS_XMITOVRFLO indicates a previous transmit request has

yet to be processed.

ARS_INVARG invalid channel parameter value or frame

type selection.

ARS_INVHARVAL the specified channel is not defined for

transmission.

SINT32 board (input) Abaco Systems Avionics Avionics

device to access. Valid range is 0-127.

SINT32 channel (input) Transmit channel to use. Valid

values are 0 or 1.

SINT32 type (input) Format of the transmit frame data to

use:

FRAME_STRUCT_DATA_FORMAT (0) – the data

parameter references a data structure of the type

TRANSMIT_FRAME_TYPE.

FRAME_RAW_DATA_FORMAT (1) – the data

parameter references an array of unsigned 32-bit

integer values containing frame data packed with no

unused bits.

UINT32 frameCount (input) This parameter specifies the number

of frames to write to the transmit buffer.

void * data (input/output) The frame data source for the

update, referenced as either a structure

array or raw data array based on the value

of the type parameter. If the type parameter

is set to

FRAME_STRUCT_DATA_FORMAT,

this parameter should be defined as an array

of structures contains the frame and error

Syntax

Description

Return Value

Arguments

Protected Frame Update Feature p708_request_frame_transmission

P-708 User's Manual 117

injection data placed into the P-708 data

buffers as well as the API-assigned frame

index provided for updating previously

defined frame data; formatted as follows:

 struct { UINT32 controlWords[4];

 UINT32 binData[512];

 UINT32 errorInjectionWord;

 UINT32 frameIndex;

 }

 See the description for

P708_WRITE_FRAMES for more details

regarding how the API uses this data

structure.

 If the type parameter is set to

FRAME_RAW_DATA_FORMAT, this

array is referenced as unsigned 32-bit

integer values containing frame data packed

with no unused bits.

	Contents
	Figures
	Tables
	Introduction
	Overview
	ARINC 708 PMC Specifications
	PMC/PCI Interface
	Typical Power Consumption
	Calculated Mean Time between Failure (MTBF)
	Operating Temperature
	Weight

	PCI Memory Map
	Board Layout
	I/0 Connections
	Input/Output Connectors
	Front I/O Connector Pin-out
	Adapter Cable

	ARINC 708 Bus Coupling
	Transformer-coupled Method
	Direct-coupled Method

	ARINC 708 PMC Bus Coupling Selection
	Bus Cables and Connectors
	Bus Terminators
	Bus Couplers and T Connectors
	RFI Caps
	External Wrap Connection
	Weather Radar and Radar Display Connection

	P-708-SW Windows Installation
	Software Installation under Windows
	Hardware Installation
	Device Driver Installation under Windows
	Installation Verification

	Linux Installation
	Overview
	Software Installation
	Building the Distribution
	Automatic installation (Builds LSP, API, and example)
	Manual Installation

	Linux Driver Operation
	Troubleshooting
	Useful Linux system utilities
	Compilation Errors
	Run-time Errors

	VxWorks Installation
	Overview
	Building a VxWorks Image
	VxBus Gen 1 Driver Support (VxWorks 6.8 and 6.9)
	VxBus Gen 2 Driver Support (VxWorks 7)
	Legacy PCI Driver Support
	Common Build Components

	Using the Sample Program
	Building the API and Sample Program with Workbench
	Target-specific Compiler Directives

	Integrity® Support
	Introduction
	Integrity Installation
	Integrity PCI Driver Installation
	Building the ARINC 708 API with Multi
	Compiler Directives
	Monolith Image versus Dynamic Download
	P-708 API Project Setup

	Building Integrity Applications

	LabVIEW Support
	Introduction
	Example VI and Project
	Functional VI Set
	LabVIEW Real-Time
	Installation in a LabVIEW Real-Time PXI/ETS System
	P-708 LabVIEW Real-Time API Library
	P-708 LabVIEW Projects
	P-708 Device Indexing
	Troubleshooting

	ARINC 708 PMC Product Features
	Overview
	ARINC 708 Protocol Support
	Receive Frame Time-tagging
	Receive Frame Storage
	Transmit Frame Storage and Transmission
	Periodic Sweep Transmission
	Error Injection
	RP-708 Enhancements

	P-708-SW Distribution and API
	Overview
	API Source Files
	P708_API.C
	P708_API.H
	P708_GLB.H
	AR_ERROR.H
	P708_HW.H
	FPGA_708.H and FPGA_RP708.H
	CEI_TYPES.H
	P708_WIN.C
	P708_VXW.C
	P708_INT.C
	P708_LNX.C
	P708_UTIL.C
	P708_SCH.C
	P708_API.DEF and P708_API64.DEF

	Windows Libraries
	Programming with the ARINC 708 API Interface
	Time-tag Data Definition
	API Defined Data Types
	Return Status Values
	Example Applications – Summary
	TST_CNFG.C
	P708ECHO.C and P708UTIL.C
	SINGLE_FRAME_SWEEP.C

	.NET Development Support
	API Routines - Summary
	Initialization and Control Routines
	Device Control Routines
	Termination Routines
	Configuration Routines
	Receive Data Processing Routines
	Transmit Data Processing Routines
	Information and Status Routines
	Utility Routines

	P708_BOARD_TEST
	P708_BYPASS_WRAP_TEST
	P708_CLOSE
	P708_EXECUTE_BIT
	P708_GET_BASE_ADDR
	P708_GET_BOARDTYPE
	P708_GET_CHANNEL_CONFIG
	P708_GET_ERROR
	P708_GO
	P708_INITIALIZE_API
	P708_INITIALIZE_DEVICE
	P708_OPEN
	P708_READ_FRAMES
	P708_READ_FRAME_DATA
	P708_READ_FRAME_DATA_T
	P708_RESET
	P708_SET_CHANNEL_CONFIG
	P708_SET_MULTITHREAD_PROTECT
	P708_STOP
	P708_UPDATE_FRAME_DATA
	P708_UPDATE_FRAME_DATA_WEI
	P708_ UPDATE_EI_DATA
	P708_VERSION
	P708_WAIT
	P708_WRITE_FRAMES
	P708_WRITE_FRAME_DATA
	P708_WRITE_FRAME_DATA_WEI
	P708_WRITE_EI_DATA
	P708_READ_DEVICE
	P708_WRITE_DEVICE

	ARINC 708 PMC Hardware Interface
	Overview
	PCI Configuration Space
	Host Memory Map
	Hardware Registers and Memory
	Control Register
	Frame Data Start Address Register
	Frame Data Stop Address Register
	Ancillary Data Start Address Register
	Ancillary Data Stop Address Register
	Frame Bit Count Register
	Frame Count Register
	Transmit Frame Interval Register
	Transmit Sweep Frame Count Register
	Transmit Sweep Interval Register
	Transmit Sweep Count Register
	Firmware Revision Register (RP-708 Only)
	Temp Sensor Read Command Register (RP-708 Only)
	Write
	Read
	Temp Sensor Write Command Register (RP-708 Only)
	Write
	Ancillary Data Buffer
	Receive Time-tagging
	Transmit Error Injection

	Protected Frame Update Feature
	Overview
	p708_frame_transmit_start
	p708_frame_transmit_stop
	p708_request_frame_transmission

